ON SUBGROUPS OF FINITE INDEX IN POSITIVELY FINITELY GENERATED GROUPS

2005 ◽  
Vol 37 (06) ◽  
pp. 873-877 ◽  
Author(s):  
NIKOLAY NIKOLOV
2015 ◽  
Vol 93 (1) ◽  
pp. 47-60
Author(s):  
JACK BUTTON ◽  
MAURICE CHIODO ◽  
MARIANO ZERON-MEDINA LARIS

We explore transversals of finite index subgroups of finitely generated groups. We show that when $H$ is a subgroup of a rank-$n$ group $G$ and $H$ has index at least $n$ in $G$, we can construct a left transversal for $H$ which contains a generating set of size $n$ for $G$; this construction is algorithmic when $G$ is finitely presented. We also show that, in the case where $G$ has rank $n\leq 3$, there is a simultaneous left–right transversal for $H$ which contains a generating set of size $n$ for $G$. We finish by showing that if $H$ is a subgroup of a rank-$n$ group $G$ with index less than $3\cdot 2^{n-1}$, and $H$ contains no primitive elements of $G$, then $H$ is normal in $G$ and $G/H\cong C_{2}^{n}$.


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


2020 ◽  
Vol 108 (5-6) ◽  
pp. 671-678
Author(s):  
D. V. Gusev ◽  
I. A. Ivanov-Pogodaev ◽  
A. Ya. Kanel-Belov

2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Anna Giordano Bruno ◽  
Pablo Spiga

AbstractWe study the growth of group endomorphisms, a generalization of the classical notion of growth of finitely generated groups, which is strictly related to algebraic entropy. We prove that the inner automorphisms of a group have the same growth type and the same algebraic entropy as the identity automorphism. Moreover, we show that endomorphisms of locally finite groups cannot have intermediate growth. We also find an example showing that the Addition Theorem for algebraic entropy does not hold for endomorphisms of arbitrary groups.


Author(s):  
J. A. Gerhard

In the paper (4) of Green and Rees it was established that the finiteness of finitely generated semigroups satisfying xr = x is equivalent to the finiteness of finitely generated groups satisfying xr−1 = 1 (Burnside's Problem). A group satisfying x2 = 1 is abelian and if it is generated by n elements, it has at most 2n elements. The free finitely generated semigroups satisfying x3 = x are thus established to be finite, and in fact the connexion with the corresponding problem for groups can be used to give an upper bound on the size of these semigroups. This is a long way from an algorithm for a solution of the word problem however, and providing such an algorithm is the purpose of the present paper. The case x = x3 is of interest since the corresponding result for x = x2 was done by Green and Rees (4) and independently by McLean(6).


Sign in / Sign up

Export Citation Format

Share Document