Identification of Dynamic Coefficients of a Five-Pad Tilting Pad Journal Bearing up to Highest Surface Speeds

2021 ◽  
Author(s):  
Philipp Zemella ◽  
Thomas Hagemann ◽  
Bastian Pfau ◽  
Hubert Schwarze
Author(s):  
Philipp Zemella ◽  
Thomas Hagemann ◽  
Bastian Pfau ◽  
Hubert Schwarze

Abstract Tilting-pad journal bearings are widely used in turbomachinery industry due to their positive dynamic properties at high rotor speeds. However, the exact description of this dynamic behavior is still part of current research. This paper presents measurement results for a five-pad tilting-pad journal bearing in load between pivot configuration. The bearing is characterized by a nominal diameter of 100 mm, a length of 90 mm, and a pivot offset of 0.6. Investigations include results for surface speeds between 25 and 120 m/s and specific bearing loads ranging from 0.0 to 3.0 MPa. Results of theoretical predictions are commonly derived from perturbation of stationary operation under static load. Therefore, experimental results for stationary operation including pad deflection under static load are presented first to characterize the investigated bearing. Measured results indicate considerable non-laminar flow in the upper region of the investigated range of rotor speeds. Second, dynamic excitation test are performed with excitation frequencies up to 400 Hz to evaluate dynamic coefficients of a stiffness (K) and damping (C) KC-model, and additionally, a KCM-model using additional virtual mass (M) coefficients. KCM-coefficients are obtained by fitting frequency dependent KC-characteristics to the KCM-model structure using least square approach. The wide range of rotating and excitation frequencies leads to subsynchronous as well as supersynchronous vibrations. Excitation forces are applied with multi-sinus and single-sinus characteristics. The latter one allows evaluation of KC-coefficients at the particular frequency ratio in the time domain. Here, frequency and time domain evaluation algorithms for dynamic coefficients are used in order to assess their special properties and quality. The impact of surface speed, bearing load, and oil flow rate on measured and predicted KCM-coefficients is investigated. Measured and predicted results can be well fitted to a KCM-model and show a significant influence of the ratio between fluid film and pivot support stiffness on the speed dependent characteristic of bearing stiffness coefficients. However, the impact of this ratio on damping coefficients is considerably lower. Further investigations on the impact of oil flow rates indicate that a significant decrease of direct damping coefficients exists below a certain level of starvation. Above this limit, direct damping coefficients are nearly independent of oil flow rate. Results are analyzed in detail and demands on improvements for predictions are derived.


2012 ◽  
Vol 157-158 ◽  
pp. 589-594
Author(s):  
Zhen Shan Zhang ◽  
Xu Dong Dai

Considering the coupling moving of shaft and pads, a theoretical model for calculating the complete dynamic coefficients (CDCs) of tilting-pad journal bearing (TPJB) is described in this paper. The model includes the influence of fluid film temperature. Based on this model, the effect of fluid film temperature on journal equilibrium position, pads inclinations, and complete dynamic coefficients is investigated for given load cases. The numerical results indicate that the effect of temperature is not neglected for the dynamic properties of TPJB. The solution will provide useful tool for precise prediction of dynamic behavior of the rotor systems supported by TPJB.


1983 ◽  
Vol 26 (2) ◽  
pp. 222-227 ◽  
Author(s):  
J. K. Parsell ◽  
P. E. Allaire ◽  
L. E. Barrett

1987 ◽  
Vol 109 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Jorgen W. Lund ◽  
Lars Bo Pedersen

An approximate method is developed to include the flexibility of the pad in the calculation of the stiffness and damping properties of a tilting pad journal bearing. It is a small-amplitude perturbation solution in which the pad deformation is accounted for solely by the change in clearance. A comparison of results with those obtained from a more complete elasto-hydrodynamic solution shows good agreement.


Author(s):  
Rafael O. Ruiz ◽  
Sergio E. Diaz

It has been identified that small variations in the pad clearance and preload of a Tilting Pad Journal Bearing lead to important variations in their dynamic coefficients. Although this variation trend is already identified, a more robust statistical analysis is required in order to identify more general tendencies and quantify it. This work presents a framework that helps to identify the relation between the manufacturing tolerance of the bearing (reflected in the pad clearance and preload) and the expected variations on the dynamic coefficients. The procedure underlies the adoption of a surrogate model (based on Kriging interpolation) trained by any deterministic model available to predict dynamic coefficients. The pad clearance and preload are considered uncertain parameters defined by a proper probability density function. All statistical quantities are obtained using stochastic simulation, specifically adopting a Monte Carlo simulation employing the surrogate model. The framework is illustrated through the study of a five pad bearing.


2006 ◽  
Vol 129 (2) ◽  
pp. 348-353 ◽  
Author(s):  
Guang Qiao ◽  
Liping Wang ◽  
Tiesheng Zheng

This paper describes a mathematical model to study the linear stability of a tilting-pad journal bearing system. By employing the Newton-Raphson method and the pad assembly technique, the full dynamic coefficients involving the shaft degrees of freedom as well as the pad degrees of freedom are determined. Based on these dynamic coefficients, the perturbation equations including self-excited motion of the rotor and rotational motion of the pads are derived. The complex eigenvalues of the equations are computed and the pad critical mass identified by eigenvalues can be used to determine the stability zone of the system. The results show that some factors, such as the preload coefficient, the pivot position, and the rotor speed, significantly affect the stability of tilting-pad journal bearing system. Correctly adjusting those parameter values can enhance the stability of the system. Furthermore, various stability charts for the system can be plotted.


Author(s):  
Philipp Zemella ◽  
Thomas Hagemann ◽  
Bastian Pfau ◽  
Hubert Schwarze

Abstract This paper presents measurement results for a five-pad tilting-pad journal bearing in load between pivot configuration. The bearing is characterized by a nominal diameter of 100 mm, a length of 90 mm, and a pivot offset of 0.6. Investigations include results for surface speeds between 25 and 120 m/s and specific bearing loads ranging from 0.0 to 3.0 MPa and different lube oil flow rates. Dynamic excitation test are performed with excitation frequencies up to 400 Hz to evaluate dynamic coefficients of a stiffness (K) and damping (C) KC-model, and additionally, a KCM-model using additional virtual mass (M) coefficients. The impact of surface speed, bearing load, and oil flow rate on measured and predicted KCM-coefficients is investigated. Measured and predicted results can be well fitted to a KCM-model and show a significant influence of the ratio between fluid film and pivot support stiffness on the speed dependent characteristic of bearing stiffness coefficients. However, the impact of this ratio on damping coefficients is considerably lower. Further investigations on the impact of oil flow rates indicate that a significant decrease of direct damping coefficients exists below a certain level of starvation. Above this limit, direct damping coefficients are nearly independent of oil flow rate. Results are analyzed in detail and demands on improvements for predictions are derived.


Sign in / Sign up

Export Citation Format

Share Document