A Probabilistic Micromechanical Code for Predicting Fatigue Life Variability: Model Development and Application

2005 ◽  
Vol 128 (4) ◽  
pp. 889-895 ◽  
Author(s):  
K. S. Chan ◽  
M. P. Enright

This paper summarizes the development of a probabilistic micromechanical code for treating fatigue life variability resulting from material variations. Dubbed MICROFAVA (micromechanical fatigue variability), the code is based on a set of physics-based fatigue models that predict fatigue crack initiation life, fatigue crack growth life, fatigue limit, fatigue crack growth threshold, crack size at initiation, and fracture toughness. Using microstructure information as material input, the code is capable of predicting the average behavior and the confidence limits of the crack initiation and crack growth lives of structural alloys under LCF or HCF loading. This paper presents a summary of the development of the code and highlights applications of the model to predicting the effects of microstructure on the fatigue crack growth response and life variability of the α+β Ti-alloy Ti-6Al-4V.

Author(s):  
K. S. Chan ◽  
M. P. Enright

This paper summarizes the development of a probabilistic micromechanical code for treating fatigue life variability resulting from material variations. Dubbed MicroFaVa (Micromechanical Fatigue Variability), the code is based on a set of physics-based fatigue models that predict fatigue crack initiation life, fatigue crack growth life, fatigue limit, fatigue crack growth threshold, crack size at initiation, and fracture toughness. Using microstructure information as material input, the code is capable of predicting the average behavior and the confidence limits of the crack initiation and crack growth lives of structural alloys under LCF or HCF loading. This paper presents a summary of the development of the code and highlights applications of the model to predicting the effects of microstructure on the fatigue crack growth response and life variability of the α + β Ti-alloy Ti-6Al-4V.


2004 ◽  
Vol 126 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Yanyao Jiang ◽  
Miaolin Feng

Fatigue crack propagation was modeled by using the cyclic plasticity material properties and fatigue constants for crack initiation. The cyclic elastic-plastic stress-strain field near the crack tip was analyzed using the finite element method with the implementation of a robust cyclic plasticity theory. An incremental multiaxial fatigue criterion was employed to determine the fatigue damage. A straightforward method was developed to determine the fatigue crack growth rate. Crack propagation behavior of a material was obtained without any additional assumptions or fitting. Benchmark Mode I fatigue crack growth experiments were conducted using 1070 steel at room temperature. The approach developed was able to quantitatively capture all the important fatigue crack propagation behaviors including the overload and the R-ratio effects on crack propagation and threshold. The models provide a new perspective for the R-ratio effects. The results support the notion that the fatigue crack initiation and propagation behaviors are governed by the same fatigue damage mechanisms. Crack growth can be treated as a process of continuous crack nucleation.


2013 ◽  
Vol 577-578 ◽  
pp. 429-432 ◽  
Author(s):  
Yukio Miyashita ◽  
Kyohei Kushihata ◽  
Toshifumi Kakiuchi ◽  
Mitsuhiro Kiyohara

Fatigue Property of an Extruded AZ61 Magnesium Alloy with the Processing Layer Introduced by Machining was Investigated. Rotating Bending Fatigue Tests were Carried out with the Specimen with and without the Processing Layer. According to Results of the Fatigue Tests, Fatigue Life Significantly Increased by Introducing the Processing Layer to the Specimen Surface. Fatigue Crack Initiation and Propagation Behaviors were Observed by Replication Technique during the Fatigue Test. Fatigue Crack Initiation Life of the Specimen with the Processing Layer was Slightly Longer than that of the Specimen without the Processing Layer. Higher Fatigue Crack Growth Resistance was also Observed when the Fatigue Crack was Growing in the Processing Layer in the Specimen with the Processing Layer. the Longer Fatigue Life Observed in the Fatigue Test in the Specimen with the Processing Layer could be Mainly due to the Higher Crack Growth Resistance. it is Speculated that the Fatigue Strength can be Controlled by Change in Condition of Machining Process. it could be Effective way in Industry to Improved Fatigue Strength only by the Cutting Process without Additional Surface Treatment Process.


2019 ◽  
Vol 54 (2) ◽  
pp. 79-94 ◽  
Author(s):  
Arash P Jirandehi ◽  
TN Chakherlou

Fatigue life estimation accuracy of mechanical parts and assemblies has always been the source of concern in different industries. The main contribution of this article lies in a study on the accuracy of different multiaxial fatigue criteria, proposing and investigating the accuracy of four optimized fatigue crack initiation life estimation methods—volume, weighted volume, surface and point, thereby improving the multiaxial fatigue life estimation accuracy. In order to achieve the goal, the fatigue lives of bolt clamped specimens, previously tested under defined experimental conditions, were estimated during fatigue crack initiation and fatigue crack growth and then summed together. In the fatigue crack initiation part, a code was written and used in the MATLAB software environment based on critical plane approach and the different multiaxial fatigue criteria. Besides the AFGROW software was utilized to estimate the crack growth share of fatigue life. Experimental and numerical results showed to be in agreement. Furthermore, detailed study and comparison of the results with the available experimental data showed that a combination of Smith–Watson–Topper approach and volume method results in lower error values, while a combination of Fatemi–Socie criterion and surface or point method presents estimated lives with lower error values. In addition, the numerical proposed procedure resulted in a good prediction of the location of fatigue crack initiation.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Robert Haynes ◽  
Ghanashyam Joshi ◽  
Natasha Bradley

Constant stress amplitude fatigue tests were conducted on the notch pre-cracked Aluminum 7075-T6 rivet hole dog-bone coupons. Monitoring of visible surface crack length by special surface engraving using digital microscope images and by ultrasonic sensors signals was carried out to yield fatigue crack length measurements in relation to number of fatigue cycles applied. The experimental results provide ultrasonic sensor validation for fatigue crack length measurements. Fracto-graphic examination of failed fatigue surfaces has provided further confirmation of notch pre-crack length, crack initiation process, and crack growth marker bands. These experimental inputs were used in NASGRO and AFGROW software fatigue crack growth simulations. The simulation results did not match the crack initiation fatigue life measured by experiments. However, there was good agreement with crack growth simulations of larger cracks. Hence, we plan to develop a machine learning application that will learn the fatigue crack initiation and crack growth processes from data obtained from our own experiments and other fatigue data available from AFGROW databases. Nonlinear AutoRegressive models with eXogenous input (NARX) artificial neural network were used to predict crack growth longer than 5.0-mm. Particle filtering modeling with Bayesian updating was applied to these experimental data for prognostics of fatigue crack growth. A concept design and preliminary implementation results will be presented.


Author(s):  
Makoto Higuchi ◽  
Katsumi Sakaguchi

Low cycle fatigue life of structural materials in LWR plants decreases remarkably in elevated temperature water depending on strain rate, temperature, water chemistry and material properties. The maximum reduction rate in fatigue life for carbon and low alloy steels is over 100 in severe conditions. Fatigue life is composed of fatigue crack initiation life and consequent propagation life. It is important to know the proportion of crack initiation life to propagation life in water environment when developing a model to estimate fatigue crack initiation life. The beachmark imprinting method was used to monitor fatigue crack initiation and consequent propagation. Environmental test conditions varied widely from severely accelerated conditions of high temperature and dissolved oxygen to mild conditions of lower temperature and oxygen. Fatigue crack initiation life could be determined using the beachmark imprinting method for all test conditions. Based on obtained test results, the susceptibility of each parameter in NWC and the relationships between NWC/NW and environmental fatigue life correction factor Fen under various conditions are discussed, but a good relationship could not be detected due to widely scattered data and a model to predict fatigue crack initiation life could not be proposed.


Author(s):  
C. M. Davies ◽  
H. Thomlinson ◽  
P. A. Hooper

Selective Laser Melting (SLM) is a relatively new manufacturing technique that offers many benefits. However the utilisation of SLM manufactured components depends on the assurance of their integrity during operation. Tensile and high cycle fatigue tests have been performed on uniaxial samples manufactured using SLM of 316L stainless steel to examine the elastic-plastic deformation and fatigue crack initiation behaviour of the material. In addition, the fatigue crack growth behaviour has been determined from tests on compact tension samples manufactured using SLM. The influence of build orientation has been examined on the compact tension samples. The results are compared to values obtained from conventional manufacturing methods. The tensile samples have a higher strength but significantly lower ductility than wrought material. The fatigue strength of the SLM material was substantially less than wrought material, though a similar fatigue limit maybe seen, this may be attributed to porosity in the material. The fatigue crack growth rate of the SLM material was 5–10 times faster, for a given stress intensity factor, than wrought materials and strongly depended on crack orientation in relation to the build direction.


1996 ◽  
Vol 118 (1) ◽  
pp. 86-94 ◽  
Author(s):  
T. L. Panontin ◽  
M. R. Hill

The paper examines the problems associated with applying proof-test-based life prediction to vessels made of high-toughness metals. Two A106 Gr B pipe specimens containing long, through-wall, circumferential flaws were tested. One failed during hydrostatic testing and the other during tension-tension cycling following a hydrostatic test. Quantitative fractography was used to verify experimentally obtained fatigue crack growth rates and a variety of LEFM and EPFM techniques were used to analyze the experimental results. The results show that: plastic collapse analysis provides accurate predictions of screened (initial) crack size when the flow stress is determined experimentally; LEFM analysis underestimates the crack size screened by the proof test and overpredicts the subsequent fatigue life of the vessel when retardation effects are small (i.e., low proof levels); and, at a high proof-test level 2.4 × operating pressure), the large retardation effect on fatigue crack growth due to the overload overwhelmed the deleterious effect on fatigue life from stable tearing during the proof test and alleviated the problem of screening only long cracks due to the high toughness of the metal.


Sign in / Sign up

Export Citation Format

Share Document