Defining the Thermodynamic Efficiency in a Wave Rotor
A wave rotor enhances the performance of a gas turbine with its internal compression and expansion, yet the thermodynamic efficiency estimation has been troubling because the efficiency definition is unclear. This paper put forward three new thermodynamic efficiency definitions to overcome the trouble: the adiabatic efficiency, the weighted-pressure mixed efficiency, and the pressure pre-equilibrated efficiency. They were all derived from multistream control volumes. As a consequence, they could correct the efficiency values and make the values for compression and expansion independent. Moreover, the latter two incorporated new models of pre-equilibration inside a control volume, and modified the hypothetical “ideal” thermodynamic processes. Parametric analyses based on practical wave rotor data demonstrated that the trends of those efficiency values reflected the energy losses in wave rotors. Essentially, different thermodynamic efficiency definitions indicated different ideal thermal cycle that an optimal wave rotor can provide for a gas turbine, and they were recommended to application based on that essence.