Proper Orthogonal Decomposition and Extended- Proper Orthogonal Decomposition Analysis of Pressure Fluctuations and Vortex Structures Inside a Steam Turbine Control Valve

Author(s):  
Peng Wang ◽  
Hongyu Ma ◽  
Yingzheng Liu

In steam turbine control valves, pressure fluctuations coupled with vortex structures in highly unsteady three-dimensional flows are essential contributors to the aerodynamic forces on the valve components, and are major sources of flow-induced vibrations and acoustic emissions. Advanced turbulence models can capture the detailed flow information of the control valve; however, it is challenging to identify the primary flow structures, due to the massive flow database. In this study, state-of-the-art data-driven analyses, namely, proper orthogonal decomposition (POD) and extended-POD, were used to extract the energetic pressure fluctuations and dominant vortex structures of the control valve. To this end, the typical annular attachment flow inside a steam turbine control valve was investigated by carrying out a detached eddy simulation (DES). Thereafter, the energetic pressure fluctuation modes were determined by conducting POD analysis on the pressure field of the valve. The vortex structures contributing to the energetic pressure fluctuation modes were determined by conducting extended-POD analysis on the pressure–velocity coupling field. Finally, the dominant vortex structures were revealed conducting a direct POD analysis of the velocity field. The results revealed that the flow instabilities inside the control valve were mainly induced by oscillations of the annular wall-attached jet and the derivative flow separations and reattachments. Moreover, the POD analysis of the pressure field revealed that most of the pressure fluctuation intensity comprised the axial, antisymmetric, and asymmetric pressure modes. By conducting extended-POD analysis, the incorporation of the vortex structures with the energetic pressure modes was observed to coincide with the synchronous, alternating, and single-sided oscillation behaviors of the annular attachment flow. However, based on the POD analysis of the unsteady velocity fields, the vortex structures, buried in the dominant modes at St = 0.017, were found to result from the alternating oscillation behaviors of the annular attachment flow.

Author(s):  
Peng Wang ◽  
Hongyu Ma ◽  
Yingzheng Liu

In steam turbine control valves, pressure fluctuations coupled with vortex structures in highly unsteady three-dimensional flows make essential contributions to aerodynamic forcing on the valve components, and are major sources of flow-induced vibration and acoustic effects. Advanced turbulence models, such as scale adaptive simulation (SAS), detached eddy simulation (DES) and large eddy simulation (LES), can capture detailed flow information of the control valve, but it is challenging to identify the primary flow structures due to the massive flow database. The present study used state-of-the-art data-driven analysis, namely proper orthogonal decomposition (POD) and extended-POD, to extract the energetic pressure fluctuations and dominant vortex structures of the control valve. To this end, the typical annular attachment flow inside a steam turbine control valve was investigated by performing a DES study. Subsequently, the energetic pressure fluctuation modes were extracted by performing POD analysis on the valve’s pressure field. The vortex structures contributing to these energetic pressure fluctuation modes were extracted by performing extended-POD analysis on the pressure-velocity coupling field. Finally, the dominant vortex structures were revealed directly by POD analysis of the valve’s velocity field. The results demonstrated that the flow instabilities inside the control valve were mainly induced by oscillations of the annular wall-attached jet and the derivative flow separations and reattachments. In POD analysis of the pressure field, the axial, antisymmetric and asymmetric pressure modes occupied most of the pressure fluctuation intensity. By further conducting extended-POD analysis, the vortex structures’ incorporation with the energetic pressure modes was identified as mainly attributed to the synchronous, alternating and single-sided oscillation behaviors of the annular attachment flow. However, based on POD analysis of the unsteady velocity fields, the vortex structures, buried in the dominant modes at St = 0.017, were found to result from alternating oscillations of the annular wall-attached jet.


1999 ◽  
Vol 13 (7-8) ◽  
pp. 1069-1095 ◽  
Author(s):  
Y. TAMURA ◽  
S. SUGANUMA ◽  
H. KIKUCHI ◽  
K. HIBI

2017 ◽  
Vol 836 ◽  
pp. 998-1008 ◽  
Author(s):  
Matteo Mancinelli ◽  
Tiziano Pagliaroli ◽  
Roberto Camussi ◽  
Thomas Castelain

In this work an experimental investigation of the near-field pressure of a compressible jet is presented. The proper orthogonal decomposition (POD) of the pressure fluctuations measured by a linear array of microphones is performed in order to provide the streamwise evolution of the jet structure. The wavenumber–frequency spectrum of the space–time pressure fields re-constructed using each POD mode is computed in order to provide the physical interpretation of the mode in terms of hydrodynamic/acoustic nature. Specifically, non-radiating hydrodynamic, radiating acoustic and ‘hybrid’ hydro-acoustic modes are found based on the phase velocity associated with the spectral energy bumps in the wavenumber–frequency domain. Furthermore, the propagation direction in the far field of the radiating POD modes is detected through the cross-correlation with the measured far-field noise. Modes associated with noise emissions from large/fine scale turbulent structures radiating in the downstream/sideline direction in the far field are thus identified.


2012 ◽  
Vol 49 (6) ◽  
pp. 484-490 ◽  
Author(s):  
Sang Bong Lee ◽  
Bum Woo ◽  
Dong Woo Park ◽  
You Won Ahn ◽  
Seok Cheon Go ◽  
...  

Author(s):  
Ioannis T. Georgiou ◽  
Christos I. Papadopoulos

Identification of the most energetic spatio-temporal patterns that govern the low-frequency dynamics of an air cavity excited by noise sources could lead to significant design improvements of enclosures for noise reduction / isolation and / or sound quality. In this work we show how the Proper Orthogonal Decomposition (POD) method can be applied to identify optimum spatio-temporal patterns governing the dynamics of the sound pressure field developed inside an air cavity. The novel feature of this approach resides into the fact that the POD technique is utilized to process databases for acoustic variables produced by state of the art computational methods in acoustics, such as the finite element method. For a cavity with rigid walls and excited by a harmonic point source, the POD technique reveals that the sound pressure field is composed of a very small number of Proper Orthogonal Modes, which are unique since they are optimum by construction. The POD technique identifies the shapes or patterns of these modes.


Author(s):  
Christos I. Papadopoulos ◽  
Ioannis T. Georgiou

We extend the application of temporal and spectral Proper Orthogonal Decomposition (POD) to study the sound propagation and sound-structure interaction of systems combined of acoustic and structural subsystems. We consider a prototypical system consisted of two adjacent rooms separated by a sound insulating plate. Approximation to the steady-state and transient response is obtained with the aid of the finite element method. We define the temporal (real) and spectral (complex) variations of POD to tackle acoustical and structural degrees of freedom. We apply the method to process the numerical databases of the finite element solutions. It is shown that the steady-state and transient response may be represented by a small number of dominant POD modes. The extracted frequencies and spatial shapes are evaluated and linked to the modal properties of the system. It is shown that POD analysis may provide significant insight on the properties of coupled structural-acoustic systems.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2261 ◽  
Author(s):  
Mohammed El-Adawy ◽  
Morgan Heikal ◽  
A. A. Aziz ◽  
Ibrahim Adam ◽  
Mhadi Ismael ◽  
...  

Proper orthogonal decomposition (POD) is a coherent structure identification technique based on either measured or computed data sets. Recently, POD has been adopted for the analysis of the in-cylinder flows inside internal combustion engines. In this study, stereoscopic particle image velocimetry (Stereo-PIV) measurements were carried out at the central vertical tumble plane inside an engine cylinder to acquire the velocity vector fields for the in-cylinder flow under different experimental conditions. Afterwards, the POD analysis were performed firstly on synthetic velocity vector fields with known characteristics in order to extract some fundamental properties of the POD technique. These data were used to reveal how the physical properties of coherent structures were captured and distributed among the POD modes, in addition to illustrate the difference between subtracting and non-subtracting the ensemble average prior to conducting POD on datasets. Moreover, two case studies for the in-cylinder flow at different valve lifts and different pressure differences across the air intake valves were presented and discussed as the effect of both valve lifts and pressure difference have not been investigated before using phase-invariant POD analysis. The results demonstrated that for repeatable flow pattern, only the first mode was sufficient to reconstruct the physical properties of the flow. Furthermore, POD analysis confirmed the negligible effect of pressure difference and subsequently the effect of engine speed on flow structures.


Author(s):  
Christian Windemuth ◽  
Martin Lange ◽  
Ronald Mailach

A significant share of the conversion of thermal into electrical energy is realized by steam turbines. Formerly designed for continuous operation, today’s requirements include extended part load operation that can be accompanied by highly unstable flow conditions and vibrations within the control valve of the turbine. The prediction of the flow at part load conditions requires large computational efforts with advanced turbulence modeling in order to compute the flow at a reasonable accuracy. Due to the unsteadiness of the flow, the evaluation of the numerical results itself is a major challenge. The turbulent structures require statistical approaches, of which the use of Spectral Proper Orthogonal Decomposition (SPOD) has proven itself as a powerful method. Within this paper, the application of the method on a critical operating point with a temporal excitation of pressure oscillations observed in the experiments with dry air is presented. Using SPOD, the dominating flow phenomena were isolated and flow structures visualized.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1660
Author(s):  
Tanmoy Chatterjee ◽  
Yulia T. Peet

Large scale coherent structures in the atmospheric boundary layer (ABL) are known to contribute to the power generation in wind farms. In order to understand the dynamics of large scale structures, we perform proper orthogonal decomposition (POD) analysis of a finite sized wind turbine array canopy in the current paper. The POD analysis sheds light on the dynamics of large scale coherent modes as well as on the scaling of the eigenspectra in the heterogeneous wind farm. We also propose adapting a novel Fourier-POD (FPOD) modal decomposition which performs POD analysis of spanwise Fourier-transformed velocity. The FPOD methodology helps us in decoupling the length scales in the spanwise and streamwise direction when studying the 3D energetic coherent modes. Additionally, the FPOD eigenspectra also provide deeper insights for understanding the scaling trends of the three-dimensional POD eigenspectra and its convergence, which is inherently tied to turbulent dynamics. Understanding the behaviour of large scale structures in wind farm flows would not only help better assess reduced order models (ROM) for forecasting the flow and power generation but would also play a vital role in improving the decision making abilities in wind farm optimization algorithms in future. Additionally, this study also provides guidance for better understanding of the POD analysis in the turbulence and wind farm community.


Sign in / Sign up

Export Citation Format

Share Document