Stationary Shoulder Friction Stir Assisted Scribe Technique for Dissimilar Joining

2021 ◽  
Vol 143 (9) ◽  
Author(s):  
Hrishikesh Das ◽  
Piyush Upadhyay

Abstract We report on implementation of a stationary shoulder in dissimilar joints of Al-steel and Al-carbon fiber reinforced polymer (CFRP) using friction stir assisted scribe technology (FaST). Viable joint strength similar to the conventional FaST process was demonstrated in Al-Steel. A significant improvement in as-welded surface roughness for both Al-steel and Al-CFRP cases was also achieved. Interrupted lap shear tests performed on Al-steel joints and a corresponding computational model indicate the joint failure typically occurs in Al sheet via a crack that originates at the steel hook tip on the loading side. A similar fracture path was observed in an Al-CFRP joint.

Author(s):  
Mahdi Farahikia ◽  
Sunilbhai Macwan ◽  
Fereidoon Delfanian ◽  
Zhong Hu

A series of tensile, compression and shear tests in room temperature were carried out on carbon fiber reinforced polymer matrix composite materials (IM7/PEEKEK) to evaluate their mechanical properties. Also tensile tests at 160 degrees Fahrenheit (72 degrees Celsius) in longitudinal and transverse directions were done to study the effects of such temperature on the tensile strength of the mentioned composite materials. The setup of the testing equipment and the furnace that was used to provide elevated temperature conditions limited the possibility of conducting compressive and shear tests at high temperature as well as raising the temperature to higher levels. The experiments were set up in accordance with ASTM standards that best corresponded to the test specifications. Specimens were categorized into groups according to their nature of testing. All the specimens were reinforced at both ends by means of tabs which were bonded on both faces to reduce the effects of the external pressure exerted on them through the grips of the testing machines and were tested until failure. Load, elongation (displacement) and strain data were recorded by means of strain gages and data acquisition systems. The accuracy of the experimental data for the room temperature portion of the experiments is verified by comparing them to those of the most equivalent composite family, as having not been given any information regarding the structural properties and manufacturing processes of the composite materials that were used throughout the experiments made it difficult to find exact ASTM standards and reference materials for the testing and comparison of results. The results of the experiments showed that the tensile strength of this particular composite material is not effected by the 160 degrees Fahrenheit temperature; a point that is proved by the literature indicating their specific and sensitive application in aircraft heat dissipation [1].


2021 ◽  
Vol 10 (1) ◽  
pp. 201-209
Author(s):  
Omer Kalaf ◽  
Tauqir Nasir ◽  
Mohammed Asmael ◽  
Babak Safaei ◽  
Qasim Zeeshan ◽  
...  

Abstract In this study, similar aluminum alloys AA5052 with additional carbon fiber-reinforced polymer composite (CFRP) interlayer were selected to investigate the effect of welding parameters (rotational speed and dwell time) on the mechanical properties, joint efficiency, and microstructure of friction stir spot weld joint. The maximum tensile shear load was 1779.6 N with joint efficiency of 14.6% obtained at rotational speed of 2,000 rpm and 2 s dwell time, which is 39.5% higher than the value at low rotational speed 850 rpm and 2 s dwell time. Meanwhile, the maximum microhardness 58 HV was attained in the keyhole region at rotational speed of 2,000 rpm and dwell time of 5 s, which is 22.4% higher compared to low rotational speed. The SEM-EDS results reveal the presence of intermetallic compounds (Al–Mg–C), which enhance the intermetallic bonding between elements.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Yong Chae Lim ◽  
Jian Chen ◽  
Jiheon Jun ◽  
Donovan N. Leonard ◽  
Michael P. Brady ◽  
...  

Abstract In the present work, thermoset carbon fiber–reinforced polymer (CFRP) was spot joined to magnesium alloy AZ31B by a friction self-piercing riveting (F-SPR) process. Lap shear tensile and cross-tension testing were used to evaluate the mechanical joint performance. An average lap shear tensile load of 5.18 kN was achieved, while an average of 2.81 kN was found from cross-tension testing. All F-SPR samples showed a pullout of AZ31B after mechanical testing, indicating good mechanical interlocking between the steel rivet and AZ31B. Corrosion potential was measured for each material to establish the galvanic corrosion characteristics. As expected, AZ31B was found to be the most active, while thermoset CFRP was the most noble. The steel rivet fell between the AZ31B (active) and the thermoset CFRP (noble). Salt fog corrosion testing (ASTM B-117) was performed to evaluate the corrosion performance of the uncoated F-SPR joint. With up to 200 h of exposure, the post-corroded F-SPR joint integrity retained 81.2% of the pre-exposure F-SPR joint strength with AZ31B pullout failure mode. From cross-sectional analysis of the F-SPR joint, extensive corrosion of AZ31B was observed at the joint and other exposure areas. However, steel rivet was not significantly corroded due to sacrificial anode effect by which AZ31B corroded first in the galvanic couple.


Sign in / Sign up

Export Citation Format

Share Document