The dynamics of flexible multibody systems with interval parameters is studied based on a non-intrusive computation methodology. The Absolute Nodal Coordinate Formulation (ANCF) is used to model the rigid-flexible multibody system, including the finite elements of the ANCF and the ANCF Reference Nodes (ANCF-RNs). The Chebyshev sampling methods including Chebyshev tensor product (CTP) sampling method and Chebyshev collocation method (CCM), are utilized to generate the Chebyshev surrogate model for Interval Differential Algebraic Equations (IDAEs). For purpose of preventing the interval explosion problem and maintaining computation efficiency, the interval bounds of the IDAEs are determined by scanning the deduced Chebyshev surrogate model. To further improve the computation efficiency, OpenMP directives are also used to parallelize the solving process of the Differential Algebraic Equations (DAEs) by fixing the uncertain interval parameter at the given sampling points. The sensitivity analysis of flexible multibody systems with interval parameters is initially performed by using the direct differentiation method. The direct differentiation method differentiates the dynamic equations with respect to the design variable, which yields the system sensitivity equations governed by DAEs. The generalized alpha method is introduced to integrate the sensitivity DAEs. The sensitivity equations of flexible multibody systems with interval parameters are also described by the IDAEs. Based on the continuum mechanics, the computational efficient analytical formulations for the derivative items of the system sensitivity equations are deduced.
Three examples are studied to validate the proposed methodology, including the complicated spatial rigid-flexible multibody systems with a large number of uncertain interval parameters, the flexible system with uncertain interval clearance size joint, and the first order sensitivity analysis of flexible multibody systems with interval parameters. Firstly, the dynamics analysis of a six-arm space robot with six interval parameters is performed. For this case study, the interval dynamics cannot be obtained by directly scanning the IDAEs because extremely huge sets of DAEs with deterministic samples have to be solved. The estimated total computational time for solving the scanned IDAEs will be 1850 days! However, the computational time for solving the scanned Chebyshev surrogate model is 9796.97 seconds. It shows the effectiveness of the proposed computation methodology. Then, the nonlinear dynamics of a planar slider-crank mechanism with uncertain interval clearance size joint is studied in this work. The kinetics model of the revolute clearance joints is formulated under the ANCF-RN framework. Moreover, the influence of the LuGre and the modified Coulomb’s friction force models on the system’s dynamic response is investigated. By analyzing the bounds of dynamic response, the bifurcation diagrams are observed. It must be highlighted that with increasing the size of clearance, it does not automatically lead to unstable behaviors. Finally, the first order sensitivity analysis of flexible multibody systems with interval parameters is also studied in this work. The third one of a flexible mechanism with interval parameters is used to perform the sensitivity analysis.