Vibration Isolation of a Test Bench Founded on Sand Layer

Author(s):  
Juha-Matti Kivinen ◽  
Erno Keskinen ◽  
Robert Hildebrand ◽  
Ville Ja¨rvinen

A modern paper machine is equipped with various finishing units e.g. calendars and coating units to produce better optical and printing properties. Today’s trend is to supply these finishing units with polymer covered rolls. Tampere University of Technology (TUT) has built up an experimental set-up to study both vibration phenomena and polymer behavior. One of the essential task is to determine and verify the soil-machine interaction. This paper presents the preliminary analysis of the vibratory behavior and experimental results of modal analyses.

Author(s):  
David Chalet ◽  
Jose´ Galindo ◽  
He´ctor Climent

The aim of this paper consists of establishing a methodology for oxidation catalyst modeling based on experimental tests and the development of a theoretical model with zero and one dimensional elements. Related to the theoretical work, the main aspects of such modeling are presented. It consists of describing the inner catalyst geometry by a combination of volumes and simple pipes network. The gas properties in volumes are calculated with a filling and emptying approach whereas the unsteady flow in pipes elements is considered to be one-dimensional and solved by using a finite difference scheme. Concerning the experimental tests, a study is carried out on a shock tube bench. The advantage of this experimental test bench is to study the propagation of a shock wave in the catalyst under controlled and convenient conditions, i.e. cold and non steady flow. Later, the model is set up by comparing the upstream and downstream pressure signals with the simulation results. Since the model lacks of relevant information of pressure losses at the inlet and outlet of the channels, which are rather difficult to compute due to the complex phenomena and flow maldistributions if the use of a 3D CFD code is avoided, the calibration of the model to match the experimental data is the decided approach. In this context, the shock wave test bench is used in order to excite the catalyst with non-steady flow conditions rather than to reproduce the conditions that will appear in real engine operation. The comparison shows good agreement between one-dimensional and experimental results. In order to validate this new modeling on a real engine configuration, an experimental validation is carried out in a four-stroke turbocharged Diesel engine. This experimental test bench allows to measure the main engine characteristics and performance as well as the instantaneous pressure upstream and downstream the catalyst. A simulation code has been also set up to model the engine and the comparison in terms of exhaust pressure pulses propagation inside the catalyst shows good agreement between the one-dimensional model and the experimental results.


Author(s):  
Y K Ahn ◽  
J-Y Ha ◽  
Y-H Kim ◽  
B-S Yang ◽  
M Ahmadian ◽  
...  

This paper presents an analytical and experimental analysis of the characteristics of a squeeze-type magnetorheological (MR) mount which can be used for various vibration isolation areas. The concept of the squeeze-type mount and details of the design of a squeeze-type MR mount are discussed. These are followed by a detailed description of the test set-up for evaluating the dynamic behaviour of the mount. A series of tests was conducted on the prototype mount built for this study, in order to characterize the changes occurring as a result of changing electrical current to the mount. The results of this study show that increasing electrical current to the mount, which increases the yield stress of the MR fluid, will result in an increase in both stiffness and damping of the mount. The results also show that the mount hysteresis increases with increase in current to the MR fluid, causing changes in stiffness and damping at different input frequencies.


1974 ◽  
Vol 96 (1) ◽  
pp. 118-126 ◽  
Author(s):  
G. G. Hirs

Turbulent film flow theories can only be verified on the basis of a large number of experimental results. Since it will be useful to handle these experimental results more or less systematically and to get some idea of the amount of work yet to be done, the first objective of this paper is to set up a classification system for turbulent film flow experiments. The second objective is to verify the bulk flow theory on the basis of the limited number of experimental results available in the literature and to show this theory to be compatible with these results.


Author(s):  
Rahand Dalshad ◽  
Tobias Sander ◽  
Michael Pfitzner

Abstract For the thermal design of combustion chambers and turbine blades in jet engines, a detailed knowledge of the combustion and of the heat loads to the walls is necessary. In general, high operating temperatures and reduced combustor size are striven for in order to increase engine efficiency and reduce weight. Consequently, the components are exposed to temperatures above the melting point of the materials and there is a growing risk of incomplete combustion within the combustion chambers. To study these effects, we set up a new test bench for fundamental investigation of chemical near-wall reactions at atmospheric pressure. First results of gaseous, non-premixed near-wall CH4/air and H2/air flames are presented. Optical methods such as two-line laser-induced fluorescence thermometry and OH* chemiluminescence were applied. Further, the heat release to the wall was determined by means of inverse heat conduction calculation using the data of implemented thermocouples.


2020 ◽  
Vol 10 (15) ◽  
pp. 5220 ◽  
Author(s):  
Jianjun Wang ◽  
Jingyi Zhao ◽  
Wenlei Li ◽  
Xing Jia ◽  
Peng Wei

In order to ensure the ride comfort of a hydraulic transport vehicle in transportation, it is important to account for the effects of the suspension system. In this paper, an improved hydraulic suspension system based on a reasonable setting of the accumulator was proposed for a heavy hydraulic transport vehicle. The hydraulic transport vehicle was a multi-degree nonlinear system, and the establishment of an appropriate vehicle dynamical model was the basis for the improvement of the hydraulic suspension system. The hydraulic suspension system was analyzed, and a mathematical model of the hydraulic suspension system with accumulator established and then analyzed. The results revealed that installing the appropriate accumulator can absorb the impact pressure on the vehicle, while a hydraulic suspension system with an accumulator can be designed. Further, it was proved that a reasonable setting for the accumulator can reduce the impact force on the transport vehicle through simulation, and the optimal accumulator parameters can be obtained. Finally, an experiment in the field was set up and carried out, and the experimental results presented to prove the viability of the proposed method.


2017 ◽  
Vol 865 ◽  
pp. 480-485
Author(s):  
Jian Liang Li ◽  
Xiao Xi Liu ◽  
Shu Qing Li ◽  
Zhi Fei Tao ◽  
Lei Ma

The research mainly focuses on the performance of the controllable hypocenter in the low frequency band. The hybrid vibration isolation method based on the disturbance observer PID control algorithm is used to improve the excitation signal quality. Based on the analysis of the structure and working principle of vibration isolator, the physical model and mathematical model are established, and the simulation test of ZK-5VIC virtual test vibration and control system is carried out. The experimental platform of hybrid vibration isolation system with low frequency interference is set up. The experiment of excitation and acquisition of low frequency signal is carried out, which provides the theoretical basis and guarantee for the vibration isolation technology in the low frequency range below 3Hz.


2020 ◽  
Vol 40 (7) ◽  
pp. 551-555
Author(s):  
P. V. Sirotin ◽  
I. Yu. Lebedinskii ◽  
M. M. Zhileikin ◽  
M. I. Sysoev

Robotica ◽  
1992 ◽  
Vol 10 (4) ◽  
pp. 303-308
Author(s):  
Luis Gonzaga Trabasso ◽  
Cezary Zielinski

SUMMARYA semi-automatic method for calibrating a robot-vision interface is presented. It puts a small work-load on the operator, requires a simple calibration jig and a solution of a very simple system of equations. It has been extensively used in an experimental robotic cell set up at Loughborough University of Technology, where various aspects of the manufacturing and the decoration of scale models are being investigated. As an extension of the calibration procedure, the paper also shows practical solutions for the problem of dealing with three dimensional objects using a single camera.


Author(s):  
Aidong Meng ◽  
Sayed A. Nassar

A Digital Speckle Pattern Interferometry (DSPI) system is developed for the real-time measuring and monitoring the out-of-plane surface deformation around tightened threaded fasteners that are used to clamp bolted assemblies. Spatial phase shifting is employed to quantitatively determine the distribution of phase data by introducing a spatial carrier fringe pattern to the speckle interferogram. This is achieved by leading the object and reference beams to two separate apertures. The configuration is also suitable for collecting the real-time deformation during bolt tightening. The experimental DSPI system is set-up with optical components on a vibration-isolation table. A Matlab software is developed for the image acquisition and phase data calculation, which yields the out-of-plane surface deformation caused by the bolt preload. An aluminum joint is used with an M12 steel fastener. For miniature screw application, however, a plastic joint is used for collecting data.


Sign in / Sign up

Export Citation Format

Share Document