A Numerical Study of an Impingement Array Inside a Three Dimensional Turbine Vane
A simplified impingement high pressure turbine vane is modeled and solved via Fluent. A relatively flat section of the vane is fitted with 15 0.51mm diameter impingement holes — 5 rows of 3 jets. Results are then compared to known experimental data. Two different turbulence models are used to study this preliminary configuration: K-omega SST and the RNG k-epsilon model. The jet exit Reynolds numbers, cross flow velocity, and the average and local heat transfer distribution are analyzed with varying Reynolds numbers and jet to target spacing. It is observed that the static pressure decreases across the vane with the cross flow velocity increasing towards the trailing edge exit, thereby uniformly increasing the jet exit velocity at each row. Forced convection is seen in the downstream rows in-between span-wise jets due to high cross flow velocities. All numerical results were capable of replicating the higher heat transfer obtained with a higher Reynolds number, and conversely, a lower heat transfer with an increase in jet to target spacing. In its entirety, validating against all correlations, the RNG model obtained an average deviation of 15.7%, while the K-omega SST yielded only 7.8%.