Replacement of I&C System for the Four Main Pumps in the Fuel Channels Cooling Circuit of “Maria” Polish Research Reactor

Author(s):  
Rafał Drobnik ◽  
Andrzej Głowacki

In this work the replacement of the I&C connected with the four main pumps in a Polish research reactor called “Maria” is discussed. In particular, this paper focuses on the aspect of the whole system of pump parameters measurements (temperature, vibrations, power) and pump control system. The whole architecture of the I&C system (including power supply, redundancy of electrical and control system) will be showed. During the I&C replacement some problems arose, such as the change in the pump control system from analog to digital system; the link existing in the reactor part of the measurement made in analogue to a digital system, as part of the measurements, which were carried out in an old control system; the code for the PLC controller program dedicated exclusively to the requirements of control systems pumps. All of these problems will be discussed here, together with the proposed solutions. Moreover, I&C functional and operational tests carried out after the placement of the pumps will be described, such as loss of power and failure of one PLC controller.

Author(s):  
R.M. Safina ◽  
◽  
M.S. Shkinderov ◽  
M.M. Mubarakov ◽  
◽  
...  

Access monitoring and control system are a set of software and hardware for restricting and registering the entrance to a given territory through special passages. In addition, when used in modern sports facilities, these systems must have a high capacity. This is necessary for the safe movement and timely evacuation of a large number of visitors. Therefore, the reliable operation of access monitoring and control systems is the most important technical challenge. Electromagnetic interference can disrupt the functions of the control system. One of the reasons for system malfunctions can be electromagnetic interference on the power supply network. The article analyzes the sources of electromagnetic interference in the power supply network. Experimental studies of the functioning of the control system under the influence of nanosecond noise on the power supply network have been carried out. A simulation model is proposed and the results of modeling electromagnetic interference in the control system when exposed to electromagnetic pulses through the power supply network are presented. The simulation results are in good agreement with the experimental data.


2022 ◽  
Vol 166 ◽  
pp. 108812
Author(s):  
Vinay Kumar ◽  
Kailash Chandra Mishra ◽  
Pooja Singh ◽  
Aditya Narayan Hati ◽  
Mohan Rao Mamdikar ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 2 ◽  
Author(s):  
Wen An ◽  
Jun Jie Ma ◽  
Hong Yang Zhou ◽  
Hong Shan Chen ◽  
Xu Jun ◽  
...  

With the development of wireless communication technology and computer technology, more and more smart technologies have been applied in electricity distribution networks. This paper presents an adaptive current differential protection and fast auto-closing system for application in 10 kV distribution networks in China Southern Power Grid. The current differential protection can adaptively change its settings according to the topology change of the primary distribution networks, thus the system effectively reduces the operation and maintenance cost of the power distribution network. In order to restore the power supply for the healthy part of the 10 kV networks quickly after a power system fault is cleared, the protection and control system provides wide area control function for automatic fault isolation and automatic switching. The traditional overcurrent protection and control system have no fault location function, it may take several minutes or even hours to manually locate a fault and then restore the power supply. Compared with the protection and control system of the traditional 10 kV distribution networks, the system developed can locate and isolate faults within 900 ms (assuming that the operating time of the load switch is 700 ms), and can quickly restore power supply in less than one second after a power system fault is cleared.


1990 ◽  
Vol 112 (3) ◽  
pp. 365-371 ◽  
Author(s):  
Y. Halevi ◽  
A. Ray

This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks [1–4] that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.


Author(s):  
Itsuki Naito ◽  
Taisuke Koyamada ◽  
Keisuke Yamamoto ◽  
Kingo Igarashi ◽  
Hideo Harada ◽  
...  

This paper introduces the Instrumentation and Control (I&C) system for the proposed UK Advanced Boiling Water Reactor (UK ABWR) offered by Hitachi-GE Nuclear Energy, Ltd (Hitachi-GE). Hitachi-GE has been progressing the UK Generic Design Assessment (GDA) licensing process over the last 3 years. This is the process through which the Office for Nuclear Regulations (ONR) assesses the UK ABWR for suitability from a nuclear safety, security, environmental protection and waste management perspective and it is the first step towards proceeding with the construction phase in the UK. ONR’s regulatory expectations setting out relevant good practice are described in the Safety Assessment principles (SAPs), which are considered into the I&C design for UK ABWR. In addition, it has also been designed to take into account relevant good practices and regulations. In accordance with expectations derived from SAPs, the UK ABWR I&C systems are categorized and classified as required by IEC 61513 and IEC 61226. In addition, the overall I&C architecture, including all associated Human-Machine Interfaces (HMIs), abides by the principles independence and diversity of safety measures, segregation and separation of the protection and control systems. As a result, the UK ABWR I&C architecture is composed of major eight sub-systems. The eight sub-systems are: -Safety System Logic and Control system (SSLC) -Hardwired Backup System (HWBS) -Safety Auxiliary Control System (SACS) -Plant Control System (PCntlS) -Reactor/Turbine Auxiliary Control System (RTACS) -Plant Computer System (PCS) -Severe Accident Control and Instrumentation system (SA C&I) -Other dedicated C&I systems. The features for each sub-system such as redundancy of safety train or segregation among divisions are specified so that each sub-system will achieve its reliability as well as increase availability. While in the Japanese ABWR safety I&C system, the main protection system (SSLC), is microprocessor-based from the decades of successful operating experience in the past BWR, to meet the UK regulatory regime expectation on diversity between Class 1 platform and non-Class 1 platform, the SSLC (Class 1) for the UK ABWR is by Field Programmable Gate Array (FPGA). This system is currently under development and complies with IEC 62556. Its safety integrity level is planned to be SIL 3 (as a single division) and SIL 4 (as a four division system) as defined in IEC 61508. The HMIs which constitute an integral part of the I&C systems are also designed to comply with the I&C architecture regarding their categorization and classification with consideration of Human Factors (HF) modern methods taken into accounts.


Aviation ◽  
2010 ◽  
Vol 14 (3) ◽  
pp. 77-82 ◽  
Author(s):  
Grzegorz Kopecki ◽  
Jacek Pieniążek ◽  
Tomasz Rogalski ◽  
Pawel Rzucidło ◽  
Andrzej Tomczyk

The article presents the project of UAV control system realized at Department of Avionics and Control Systems of Rzeszów University of Technology. The project is based on earlier experiences. In the article general structure of the onboard control system is shown as well as the structure of control station. There are described in proposed control and navigation procedures as well as human factor, failure detection and system reconfiguration. Santrauka Šiame straipsnyje aprašomas bepiločiu orlaiviu kontroles sistemos projekto lgyvendinimas Ržešovo technologijos universiteto Aviadjos prietaisu ir kontroles sistemu katedroje. Projektas atliktas remiantis ankstesne patirtimi. Pateikta ne tik borto sistemu bendroji struktūra, bet ir kontroles stočiu struktūra. Darbe nagrinejamas žmogaus veiksnys, gedimu aptikimas ir sistemu rekonfigūravimas pasiūlytose kontroles ir navigacijos procedūrose.


1996 ◽  
Vol 32 (4) ◽  
pp. 2490-2494 ◽  
Author(s):  
M. Tezuka ◽  
T. Kojo ◽  
M. Naito ◽  
E. Toyoda ◽  
S. Hanai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document