Investigation of a Novel Gas Turbine Cycle With Coal Gas Fueled Chemical-Looping Combustion

2000 ◽  
Author(s):  
Hongguang Jin ◽  
Masaru Ishida

Abstract A new type of integrated gasification combined cycle (IGCC) with chemical-looping combustion and saturation for air is proposed and investigated. Chemical-looping combustion may be carried out in two successive reactions between two reactors, a reduction reactor (coal gas with metal oxides) and an oxidation reactor (the reduced metal with oxygen in air). The study on the new system has revealed that the thermal efficiency of this new-generation power plant will be increased by approximately 10–15 percentage points compared to the conventional IGCC with CO2 recovery. Furthermore, to develop the chemical-looping combustor, we have experimentally examined the kinetic behavior between solid looping materials and coal gas in a high-pressure fixed bed reactor. We have identified that the coal gas chemical-looping combustor has much better reactivity, compared to the natural gas one. This finding is completely different from the direct combustion in which combustion with natural gas is much easier than that with other fuels. Hence, this new type of coal gas combustion will make breakthrough in clean coal technology by simultaneously resolving energy and environment problems.

2006 ◽  
Vol 45 (1) ◽  
pp. 157-165 ◽  
Author(s):  
Beatriz M. Corbella ◽  
Luis F. de Diego ◽  
Francisco García-Labiano ◽  
Juan Adánez ◽  
José M. Palacios

2009 ◽  
Vol 26 (2) ◽  
pp. 592-602 ◽  
Author(s):  
Qilei Song ◽  
Rui Xiao ◽  
Zhongyi Deng ◽  
Laihong Shen ◽  
Mingyao Zhang

2008 ◽  
Vol 49 (11) ◽  
pp. 3178-3187 ◽  
Author(s):  
Qilei Song ◽  
Rui Xiao ◽  
Zhongyi Deng ◽  
Huiyan Zhang ◽  
Laihong Shen ◽  
...  

2021 ◽  
Author(s):  
Basavaraja Revappa Jayadevappa

Abstract Operation of power plants in carbon dioxide capture and non-capture modes and energy penalty or energy utilization in such operations are of great significance. This work reports on two gas fired pressurized chemical-looping combustion power plant lay-outs with two inbuilt modes of flue gas exit namely, with carbon dioxide capture mode and second mode is letting flue gas (consists carbon dioxide and water) without capturing carbon dioxide. In the non-CCS mode, higher thermal efficiencies of 54.06% and 52.63% efficiencies are obtained with natural gas and syngas. In carbon capture mode, a net thermal efficiency of 52.13% is obtained with natural gas and 48.78% with syngas. The operating pressure of air reactor is taken to be 13 bar for realistic operational considerations and that of fuel reactor is 11.5 bar. Two power plant lay-outs developed based combined cycle CLC mode for natural gas and syngas fuels. A single lay-out is developed for two fuels with possible retrofit for dual fuel operation. The CLC Power plants can be operated with two modes of flue gas exit options and these operational options makes them higher thermal efficient power plants.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Oghare Victor Ogidiama ◽  
Mohammad Abu Zahra ◽  
Tariq Shamim

High energy penalty and cost are major obstacles in the widespread use of CO2 capture techniques for reducing CO2 emissions. Chemical looping combustion (CLC) is an innovative means of achieving CO2 capture with less cost and low energy penalty. This paper conducts a detailed techno-economic analysis of a natural gas-fired CLC-based power plant. The power plant capacity is 1000 MWth gross power on a lower heating value basis. The analysis was done using Aspen Plus. The cost analysis was done by considering the plant location to be in the United Arab Emirates. The plant performance was analyzed by using the cost of equipment, cost of electricity, payback period, and the cost of capture. The performance of the CLC system was also compared with a conventional natural gas combined cycle plant of the same capacity integrated with post combustion CO2 capture technology. The analysis shows that the CLC system had a plant efficiency of 55.6%, electricity cost of 5.5 cents/kWh, payback time of 3.77 years, and the CO2 capture cost of $27.5/ton. In comparison, a similar natural gas combined cycle (NGCC) power plant with CO2 capture had an efficiency of 50.6%, cost of electricity of 6.1 cents/kWh, payback period of 4.57 years, and the capture cost of $42.9/ton. This analysis shows the economic advantage of the CLC integrated power plants.


2005 ◽  
Vol 39 (15) ◽  
pp. 5796-5803 ◽  
Author(s):  
Beatriz M. Corbella ◽  
Luis F. de Diego ◽  
Francisco García-Labiano ◽  
Juan Adánez ◽  
José M. Palacios

Fuel ◽  
2015 ◽  
Vol 153 ◽  
pp. 202-209 ◽  
Author(s):  
Firas N. Ridha ◽  
Dennis Lu ◽  
Arturo Macchi ◽  
Robin W. Hughes

Author(s):  
Giovanni Lozza ◽  
Paolo Chiesa ◽  
Matteo Romano ◽  
Paolo Savoldelli

Chemical-Looping Combustion (CLC) is a process where fuel oxidation is accomplished by the oxygen carried by a metal oxide, circulating across two reactors: a reduction reactor (reducing the metal oxide by oxidizing the natural gas fuel) and an oxidation reactor (re-oxidizing the metal by reacting with air, a strongly exothermic reaction). The system produces: (i) a stream of oxidation products (CO2 and H2O), ready for carbon sequestration after water separation and CO2 liquefaction; (ii) a stream of hot air (deprived of some oxygen) used as working fluid of a gas turbine cycle. Due to the moderate temperature (∼850°C) of this stream, sensibly lower than those adopted in commercial gas turbines, the combined cycle arranged around this concept suffers from poor conversion efficiency and, therefore, economics. In the present paper, the basic CLC arrangement is modified by inserting a third reactor in the loop. This reactor, by exploiting an intermediate oxidation state of the circulating metal, produces H2 used as decarbonized fuel to raise the temperature of the air coming from the oxidation reactor, up to the highest value allowed by the modern gas turbine technology (∼1350°C), thus achieving elevated efficiency and specific power output. This paper is aimed to assess the potential of power cycles based on the three reactors (CLC3) arrangement. More specifically, we will discuss the plant configuration, the process optimization and the performance prediction. Results show that the CLC3 system is very promising: the net LHV efficiency of the best configuration exceeds 51%, an outstanding figure for a natural gas power cycle producing liquid, disposal-ready CO2 and negligible NOx emissions. Commercial gas turbines can be easily adapted to operate in the specific conditions of the CLC3 arrangement which, apart from the reactors system, does not require the development of novel technologies and/or high-risk components. The paper also reports a final comparison with a rival technology based on natural gas partial oxidation, water-gas shift reaction and CO2 separation by MDEA absorption. This work has been performed within the research on the Italian Electrical System “Ricerca di Sistema”, Ministerial Decrees of January 26 – 2000, and April 17 – 2001.


Sign in / Sign up

Export Citation Format

Share Document