Thermal Conductivity of Cubic Mesoporous Silica Thin Films
This paper reports, for the first time, the cross-plane thermal conductivity of highly ordered cubic mesoporous silica thin films with porosity of 31% and thickness ranging between 200 and 500 nm. The mesoporous thin films are synthesized based on evaporation induced self-assembly process. The pores are spherical with average inter-pore spacing and pore diameter equal to 5.95 nm and 5 nm, respectively. The thermal conductivity is measured at room temperature using the 3ω method. The experimental setup and the associated analysis are validated by comparing the thermal conductivity measurements for the silicon substrate and for high quality thermal oxide thin films with data reported in the literature. The cross-plane thermal conductivity of the synthesized mesoporous silica thin films does not strongly depend on film thickness due to the reduction in phonon mean free path caused by the presence of nanopores. The average thermal conductivity is 0.61 ± 0.011 W/mK, which is 56% lower than that of bulk fused silica at room temperature.