scholarly journals Investigation on the Power Factor of Skutterudite Smy(FexNi1-x)4Sb12 Thin Films: Effects of Deposition and Annealing Temperature

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5773
Author(s):  
Giovanna Latronico ◽  
Paolo Mele ◽  
Cristina Artini ◽  
Pietro Manfrinetti ◽  
Sian Wei Pan ◽  
...  

Filled skutterudites are currently studied as promising thermoelectric materials due to their high power factor and low thermal conductivity. The latter property, in particular, can be enhanced by adding scattering centers, such as the ones deriving from low dimensionality and the presence of interfaces. This work reports on the synthesis and characterization of thin films belonging to the Smy(FexNi1-x)4Sb12-filled skutterudite system. Films were deposited under vacuum conditions by the pulsed laser deposition (PLD) method on fused silica substrates, and the deposition temperature was varied. The effect of the annealing process was studied by subjecting a set of films to a thermal treatment for 1 h at 423 K. Electrical conductivity σ and Seebeck coefficient S were acquired by the four-probe method using a ZEM-3 apparatus performing cycles in the 348–523 K temperature range, recording both heating and cooling processes. Films deposited at room temperature required three cycles up to 523 K before being stabilized, thus revealing the importance of a proper annealing process in order to obtain reliable physical data. XRD analyses confirm the previous result, as only annealed films present a highly crystalline skutterudite not accompanied by extra phases. The power factor of annealed films is shown to be lower than in the corresponding bulk samples due to the lower Seebeck coefficients occurring in films. Room temperature thermal conductivity, on the contrary, shows values comparable to the ones of doubly doped bulk samples, thus highlighting the positive effect of interfaces on the introduction of scattering centers, and therefore on the reduction of thermal conductivity.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jyun-Min Lin ◽  
Ying-Chung Chen ◽  
Chi-Pi Lin

Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.


Author(s):  
Thomas Coquil ◽  
Neal Hutchinson ◽  
Laurent Pilon ◽  
Erik Richman ◽  
Sarah Tolbert

This paper reports the cross-plane thermal conductivity of highly ordered cubic and hexagonal templated mesoporous amorphous silica thin films synthesized by evaporation-induced self-assembly process. Cubic and hexagonal films featured spherical and cylindrical pores and average porosity of 25% and 45%, respectively. The pore diameter ranged from 3 to 18 nm and film thickness from 80 to 540 nm while the average wall thickness varied from 3 to 12 nm. The thermal conductivity was measured at room temperature using the 3ω method. The experimental setup and the associated analysis were validated by comparing the thermal conductivity measurements with data reported in the literature for the silicon substrate and for high quality thermal oxide thin films with thickness ranging from 100 to 500 nm. The cross-plane thermal conductivity of the synthesized mesoporous silica thin films does not show strong dependence on pore size, wall thickness, or film thickness. This is due to the fact that heat is mainly carried by very localized non propagating vibrational modes. The average thermal conductivity for the cubic mesoporous silica films was 0.30 ± 0.02 W/mK, while it was 0.20 ± 0.01 W/mK for the hexagonal films. This corresponds to a reduction of 79% and 86% from bulk fused silica at room temperature.


Author(s):  
Soojung C. Hur ◽  
Laurent Pilon ◽  
Adam Christensen ◽  
Samuel Graham

This paper reports, for the first time, the cross-plane thermal conductivity of highly ordered cubic mesoporous silica thin films with porosity of 31% and thickness ranging between 200 and 500 nm. The mesoporous thin films are synthesized based on evaporation induced self-assembly process. The pores are spherical with average inter-pore spacing and pore diameter equal to 5.95 nm and 5 nm, respectively. The thermal conductivity is measured at room temperature using the 3ω method. The experimental setup and the associated analysis are validated by comparing the thermal conductivity measurements for the silicon substrate and for high quality thermal oxide thin films with data reported in the literature. The cross-plane thermal conductivity of the synthesized mesoporous silica thin films does not strongly depend on film thickness due to the reduction in phonon mean free path caused by the presence of nanopores. The average thermal conductivity is 0.61 ± 0.011 W/mK, which is 56% lower than that of bulk fused silica at room temperature.


2019 ◽  
Vol 7 (6) ◽  
pp. 1670-1680 ◽  
Author(s):  
Yo-Seop Yoon ◽  
Won-Yong Lee ◽  
No-Won Park ◽  
Gil-Sung Kim ◽  
Rafael Ramos ◽  
...  

Superlattice thin films, which are used in thermoelectric (TE) devices for small-scale solid-state cooling and for generating electrical power, have recently been attracting attention due to their low dimensionality, low thermal conductivity, and enhanced power factor.


MRS Advances ◽  
2016 ◽  
Vol 1 (22) ◽  
pp. 1631-1636 ◽  
Author(s):  
Boya Cui ◽  
D. Bruce Buchholz ◽  
Li Zeng ◽  
Michael Bedzyk ◽  
Robert P. H. Chang ◽  
...  

ABSTRACTThe cross-plane thermal conductivities of InGaZnO (IGZO) thin films in different morphologies were measured on three occasions within 19 months, using the 3ω method at room temperature 300 K. Amorphous (a-), semi-crystalline (semi-c-) and crystalline (c-) IGZO films were grown by pulsed laser deposition (PLD), followed by X-ray diffraction (XRD) for evaluation of film quality and crystallinity. Semi-c-IGZO shows the highest thermal conductivity, even higher than the most ordered crystal-like phase. After being stored in dry low-oxygen environment for months, a drastic decrease of semi-c-IGZO thermal conductivity was observed, while the thermal conductivity slightly reduced in c-IGZO and remained unchanged in a-IGZO. This change in thermal conductivity with storage time can be attributed to film structural relaxation and vacancy diffusion to grain boundaries.


1992 ◽  
Vol 285 ◽  
Author(s):  
L. Rimai ◽  
R. Ager ◽  
J. Hangas ◽  
E. M. Loaothetis ◽  
Nayef Abu-ageel ◽  
...  

ABSTRACTAblation of ceramic silicon carbide with 351 nm excimer radiation was used to depositSIC films on fused silica and on sapphire. For deposition temperatures above 850° C, diffraction shows the films to be crystalline with the [111] axis preferentially oriented normally to the film. Optical spectra show an indirect energy gap at 2.2 eV, near that for the cubic polytype, although the 200 diffractions are absent. Room temperature resistivities range between .02 to .1 Ωcm. Deposition below 600° C yields amorphous SiC with no diffraction bands, low and variable optical band gap and very high resistivity.


Author(s):  
Ulises Acevedo Salas ◽  
Ismail Fourati ◽  
Jean Juraszek ◽  
Fabienne Richomme ◽  
Denis Pelloquin ◽  
...  

The strong interplay between magnetism and transport can tune the thermoelectric properties in chalcogenides and oxides. In the case of ferromagnetic CoS 2 pyrite, it was previously shown that the power factor is large at room temperature, reaching 1 mW m −1  K −2 and abruptly increases for temperatures below the Curie transition ( T C ), an increase potentially due to a magnonic effect on the Seebeck ( S ) coefficient. The too large thermal conductivity approximately equal to 10.5 W m −1  K −1 at room temperature prevents this pyrite from being a good thermoelectric material. In this work, samples belonging to the Co 1− x Fe x S 2 pyrite family ( x  = 0, 0.15 and 0.30) have thus been investigated in order to modify the thermal properties by the introduction of disorder on the Co site. We show here that the thermal conductivity can indeed be reduced by such a substitution, but that this substitution predominantly induces a reduction of the electronic part of the thermal conductivity and not of the lattice part. Interestingly, the magnonic contribution to S below T C disappears as x increases, while at high T , S tends to a very similar value (close to −42 µV K −1 ) for all the samples investigated. This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.


2015 ◽  
Vol 15 (10) ◽  
pp. 7472-7475 ◽  
Author(s):  
Dongsuk Jun ◽  
Soojung Kim ◽  
Wonchul Choi ◽  
Junsoo Kim ◽  
Taehyoung Zyung ◽  
...  

We fabricated silicide/silicon hetero-junction structured thermoelectric device by CMOS process for the reduction of thermal conductivity with the scatterings of phonons at silicide/silicon interfaces. Electrical conductivities, Seebeck coefficients, power factors, and temperature differences are evaluated using the steady state analysis method. Platinum silicide/silicon multilayered structure showed an enhanced Seebeck coefficient and power factor characteristics, which was considered for p-leg element. Also, erbium silicide/silicon structure showed an enhanced Seebeck coefficient, which was considered for an n-leg element. Silicide/silicon multilayered structure is promising for thermoelectric applications by reducing thermal conductivity with an enhanced Seebeck coefficient. However, because of the high thermal conductivity of the silicon packing during thermal gradient is not a problem any temperature difference. Therefore, requires more testing and analysis in order to overcome this problem. Thermoelectric generators are devices that based on the Seebeck effect, convert temperature differences into electrical energy. Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, it is only in recent years that interest has increased in energy generation.


RSC Advances ◽  
2017 ◽  
Vol 7 (33) ◽  
pp. 20336-20344 ◽  
Author(s):  
Suchitra Yadav ◽  
Brajesh S. Yadav ◽  
Sujeet Chaudhary ◽  
Dinesh K. Pandya

Deposition potential controlled evolution of (420) textured CoSb3 phase and micro structure correlated to enhancement in near room temperature thermoelectric power-factor.


Author(s):  
Bo Qiu ◽  
Xiulin Ruan

In this work, thermal conductivity of perfect and nanoporous few-quintuple Bi2Te3 thin films as well as nanoribbons with perfect and zig-zag edges is investigated using molecular dynamics (MD) simulations with Green-Kubo method. We find minimum thermal conductivity of perfect Bi2Te3 thin films with three quintuple layers (QLs) at room temperature, and we believe it originates from the interplay between inter-quintuple coupling and phonon boundary scattering. Nanoporous films and nanoribbons are studied for additional phonon scattering channels in suppressing thermal conductivity. With 5% porosity in Bi2Te3 thin films, the thermal conductivity is found to decrease by a factor of 4–6, depending on temperature, comparing to perfect single QL. For nanoribbons, width and edge shape are found to strongly affect the temperature dependence as well as values of thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document