scattering centers
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 48)

H-INDEX

21
(FIVE YEARS 5)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4421
Author(s):  
Ju-Yong Kim ◽  
Suk-Won Choi

Micro-sized segregated liquid crystals (MSLCs) surrounded by a polymer medium can be used for haze film applications. When incident light passes through the MSLC film, the microsized particles act as light scattering centers. In this study, the results of the addition of a multi-functional acrylate to a commercial thiol-ene prepolymer system, as well as the morphology of (LC) droplets, fractal dimension (D), and the optical haze performance of the micro-sized segregated LCs formed by UV-initiated photopolymerization, are reported. With increasing fraction of the multi-functional acrylate within the host polymer matrix, the small scattering centers (LC droplets) also increase, giving rise to a large optical haze in the prepared film. The optical haze can be characterized by the D of the associated LC droplet morphology in the films. The optical haze and D exhibit a strong correlation; thus, a qualitative prediction of the optical haze is possible via geometric fractal analysis.


2021 ◽  
Vol 13 (24) ◽  
pp. 5121
Author(s):  
Yu Zhou ◽  
Yi Li ◽  
Weitong Xie ◽  
Lu Li

It is very common to apply convolutional neural networks (CNNs) to synthetic aperture radar (SAR) automatic target recognition (ATR). However, most of the SAR ATR methods using CNN mainly use the image features of SAR images and make little use of the unique electromagnetic scattering characteristics of SAR images. For SAR images, attributed scattering centers (ASCs) reflect the electromagnetic scattering characteristics and the local structures of the target, which are useful for SAR ATR. Therefore, we propose a network to comprehensively use the image features and the features related to ASCs for improving the performance of SAR ATR. There are two branches in the proposed network, one extracts the more discriminative image features from the input SAR image; the other extracts physically meaningful features from the ASC schematic map that reflects the local structure of the target corresponding to each ASC. Finally, the high-level features obtained by the two branches are fused to recognize the target. The experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset prove the capability of the SAR ATR method proposed in this letter.


2021 ◽  
Vol 13 (21) ◽  
pp. 4358
Author(s):  
Chuan Du ◽  
Lei Zhang

Some recent articles have revealed that synthetic aperture radar automatic target recognition (SAR-ATR) models based on deep learning are vulnerable to the attacks of adversarial examples and cause security problems. The adversarial attack can make a deep convolutional neural network (CNN)-based SAR-ATR system output the intended wrong label predictions by adding small adversarial perturbations to the SAR images. The existing optimization-based adversarial attack methods generate adversarial examples by minimizing the mean-squared reconstruction error, causing smooth target edge and blurry weak scattering centers in SAR images. In this paper, we build a UNet-generative adversarial network (GAN) to refine the generation of the SAR-ATR models’ adversarial examples. The UNet learns the separable features of the targets and generates the adversarial examples of SAR images. The GAN makes the generated adversarial examples approximate to real SAR images (with sharp target edge and explicit weak scattering centers) and improves the generation efficiency. We carry out abundant experiments using the proposed adversarial attack algorithm to fool the SAR-ATR models based on several advanced CNNs, which are trained on the measured SAR images of the ground vehicle targets. The quantitative and qualitative results demonstrate the high-quality adversarial example generation and excellent attack effectiveness and efficiency improvement.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5773
Author(s):  
Giovanna Latronico ◽  
Paolo Mele ◽  
Cristina Artini ◽  
Pietro Manfrinetti ◽  
Sian Wei Pan ◽  
...  

Filled skutterudites are currently studied as promising thermoelectric materials due to their high power factor and low thermal conductivity. The latter property, in particular, can be enhanced by adding scattering centers, such as the ones deriving from low dimensionality and the presence of interfaces. This work reports on the synthesis and characterization of thin films belonging to the Smy(FexNi1-x)4Sb12-filled skutterudite system. Films were deposited under vacuum conditions by the pulsed laser deposition (PLD) method on fused silica substrates, and the deposition temperature was varied. The effect of the annealing process was studied by subjecting a set of films to a thermal treatment for 1 h at 423 K. Electrical conductivity σ and Seebeck coefficient S were acquired by the four-probe method using a ZEM-3 apparatus performing cycles in the 348–523 K temperature range, recording both heating and cooling processes. Films deposited at room temperature required three cycles up to 523 K before being stabilized, thus revealing the importance of a proper annealing process in order to obtain reliable physical data. XRD analyses confirm the previous result, as only annealed films present a highly crystalline skutterudite not accompanied by extra phases. The power factor of annealed films is shown to be lower than in the corresponding bulk samples due to the lower Seebeck coefficients occurring in films. Room temperature thermal conductivity, on the contrary, shows values comparable to the ones of doubly doped bulk samples, thus highlighting the positive effect of interfaces on the introduction of scattering centers, and therefore on the reduction of thermal conductivity.


2021 ◽  
Vol 6 (3) ◽  
pp. 10-13
Author(s):  
E. Khutsishviliis ◽  
Z. Chubinishvili ◽  
G. Kekelidze ◽  
I. Kalandadze ◽  
T. Qamushadze ◽  
...  

The electrical properties of n-type crystals of InAs compound, grown from stoichiometric melt by the horizontal zone melting method, have been investigated in the temperature range of 4.2 K-300 K before and after fast neutron irradiation up to high integral fluences of 2×1018n∙cm-2. At a fixed temperature electrons concentration (n) increases almost by one order during irradiation, and practically does not change with increasing of temperature. n increases only slightly by increasing of temperature near 300 K, both before and after irradiation. When  ≥ 4×1018cm-3 the change of  during irradiation is negligible. Comparison of experimental data of mobility with theory shows that the privileged scattering mechanism of electrons at 300 K is scattering on optical phonons in InAs with  1016-1017 cm-3 and scattering on ions of impurity in InAs with n~1018-1019 cm-3. The analysis shows that during irradiation point type scattering centers of donor-type structural defects with shallow levels in the forbidden zone appear. Consequently, the mobility decreases during irradiation. At 300 K in  sample with electrons concentration of 3×1016 cm-3 the mobility decreases by 5 times after irradiation, which is equivalent to the formation of 1.5×1019cm-3 charged point scattering centers.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Daniel Dorow-Gerspach ◽  
Dieter Mergel ◽  
Matthias Wuttig

Highly conductive TiO2 films with different Nb doping levels (up to 5 at%) were prepared by reactive DC magnetron sputtering under precise control of the oxygen partial pressure. They were deposited on unheated substrates, covered with a protective Si3N4 layer, and subsequently annealed at 300 °C. The doping efficiency of Nb is greater than 90%. Conductivity is a maximum for a partly oxidized target in the transition range. The best films exhibit a resistivity of 630 µΩ cm and a mobility of 7.6 cm2/Vs combined with a high transparency above 70%. Comparing the behavior of undoped and Nb-containing films, intrinsic limits of the conductivity in the TiO2−x:Nb system could be observed, and a consistent model explaining these findings is presented. The conductivity is limited—by decreasing electron density due to Nb oxidation—by increasing incorporation formation of Nb2O5 clusters as scattering centers with increasing oxygen partial pressure and Nb concentration, by a transition from the crystalline to the amorphous state of the films below a critical oxygen partial pressure.


2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Y. H. Wang ◽  
K. Hashimoto ◽  
T. Tomimatsu ◽  
Y. Hirayama

Sign in / Sign up

Export Citation Format

Share Document