Interdisciplinary and Consistent Use of a 3D CAD Model for CAx Education in Engineering Studies

Author(s):  
Andreas Faath ◽  
Reiner Anderl

Computer Aided Design (CAD) represents one of the key lectures in the studies of mechanical and process engineering as well as several other engineering disciplines. Furthermore Computer Aided x (CAx) systems are firmly established in the product development process. A new concept of teaching for engineering studies at the Technical University of Darmstadt (TU Darmstadt) derived by project based learning is introduced using CAx process chains i.e. the CAD-Multi Body Simulation (MBS) process chain. For the first time in engineering degree a 3D CAD model is consistently used by different process chains in multiple lectures and exercises during the whole engineering study. The early integration of this 3D CAD model in the second semester lays a foundation for its usage in further lectures, courses, projects and theses. Due to the fact, that this 3D CAD model embodies a university groups’ race car, students are able to deepen their knowledge within the university group “TU Darmstadt Racing Team e.V. (DART)”. Therefore, synergies between private and student activities are promoted, e.g. students acquire knowledge about automotive engineering. Besides the virtual implementation and validation, concepts can use the prototype for implementation and validation. The suitability of the 3D CAD model for CAD education in engineering studies especially the modelling and assembling of parts and assemblies is validated by the coached exercise of the course “Computer Aided Design”. The design education of students with mechanical engineering orientated fields of studies is held as a mandatory course in the second semester of mechanical engineering degrees at TU Darmstadt since 1995 and is solely taught with modern 3D CAD Systems. The MBS process chain is validated by several projects and theses using the McNeil Swendler Corp. (MSC) Software Automated Dynamic Analysis of Mechanical Systems (ADAMS) Car. Students run MBS by using the 3D CAD model. Besides driving maneuvers, stamp tests are simulated. In this context the entire MBS process chain is passed. The 3D CAD model serves as a basis for structures, geometry and the representation of kinematic chains, guided by the 3D CAD models geometry.

2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


Author(s):  
Soonjo Kwon ◽  
Byung Chul Kim ◽  
Duhwan Mun ◽  
Soonhung Han

The required level of detail (LOD) of a three-dimensional computer-aided design (3D CAD) model differs according to its purpose. It is therefore important that users are able to simplify a highly complex 3D CAD model and create a low-complexity one. The simplification of a 3D CAD model requires the application of a simplification operation and evaluation metrics for the geometric elements of the 3D CAD model. The evaluation metrics are used to select those elements that should be removed. The simplification operation removes selected elements in order to simplify the 3D CAD model. In this paper, we propose the graph-based simplification of feature-based 3D CAD models using a method that preserves connectivity. First, new evaluation metrics that consider the discrimination priority among several simplification criteria are proposed. Second, a graph-based refined simplification operation that prevents the separation of a feature-based 3D CAD model into multiple volumes is proposed. Finally, we verify the proposed method by implementing a prototype system and performing simplification experiments using feature-based 3D CAD models.


2021 ◽  
Vol 111 (11-12) ◽  
pp. 797-802
Author(s):  
Leonhard Alexander Meijer ◽  
Torben Merhofe ◽  
Timo Platt ◽  
Dirk Biermann

In diesem Beitrag wird ein neuer Ansatz zum Erstellen von Maschinenprogrammen zur mikrofrästechnischen Oberflächenstrukturierung vorgestellt und die Anwendung der Prozesskette für ein komplexes, industrielles Verzahnungswerkzeug beschrieben. Durch die Reduzierung des Berechnungsaufwandes in der CAD/CAM (Computer-aided Design & Manufacturing)-Umgebung können die Limitierungen konventioneller Softwarelösungen umgangen und Bearbeitungsprogramme für komplexe Strukturierungsaufgaben effizient erstellt werden.   A new method for generating machine programs for micromilling surface structuring is presented, and the application of the process chain to a complex, industrial gearing die is described. By reducing the computational effort in the CAD/CAM (Computer-aided Design & Manufacturing) environment, the problems of conventional software solutions can be avoided and complex machining programs can be created.


3D Printing ◽  
2017 ◽  
pp. 154-171 ◽  
Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi

Laser additive manufacturing is an advanced manufacturing process for making prototypes as well as functional parts directly from the three dimensional (3D) Computer-Aided Design (CAD) model of the part and the parts are built up adding materials layer after layer, until the part is competed. Of all the additive manufacturing process, laser additive manufacturing is more favoured because of the advantages that laser offers. Laser is characterized by collimated linear beam that can be accurately controlled. This chapter brings to light, the various laser additive manufacturing technologies such as: - selective laser sintering and melting, stereolithography and laser metal deposition. Each of these laser additive manufacturing technologies are described with their merits and demerits as well as their areas of applications. Properties of some of the parts produced through these processes are also reviewed in this chapter.


2020 ◽  
Vol 32 (5) ◽  
pp. 691-705
Author(s):  
Nazanin Ansari ◽  
Sybille Krzywinski

PurposeThis paper aims to introduce a process chain spanning from scanned data to computer-aided engineering and further required simulations up to the subsequent production. This approach has the potential to reduce production costs and accelerate the procedure.Design/methodology/approachA parametric computer-aided design (CAD) model of the flyer wearing a wingsuit is created enabling easy changes in its posture and the wingsuit geometry. The objective is to track the influence of geometry changes in a timely manner for following simulation scenarios.FindingsAt the final stage, the two-dimensional (2D) pattern cuts were derived from the developed three-dimensional (3D) wingsuit, and the results were compared with the conventional ones used in the first stages of the wingsuit development.Originality/valueProposing a virtual development process chain is challenging; apart from the fact that the CAD construction of a wingsuit flyer – in itself posing a complicated task – is required at a very early stage of the procedure.


From time to time the Royal Society organizes meetings for the discussion of some new development in engineering and applied science. It seemed possible to the organizers of this meeting that it would be profitable to bring together workers in industry and in the universities to discuss some aspect of computer-aided design. As you will see we have chosen the application of computer aids to mechanical engineering design and manufacture. This restriction to mechanical engineering was deliberate, partly because the application of computer aids to mechanical engineering design is somewhat behind similar activities in electrical and civil engineering. Another reason is that the development of such applications has reached a particularly interesting stage, and it is now perhaps appropriate to review progress and to discuss the directions in which future research should proceed. Although some examples of computer-aided design in mechanical engineering can be found from the earliest days of computing, the development really started in the late fifties with early experiments in the use of graphic displays and with the introduction of multi-access computing. Some may date the beginning of the developments which we are going to discuss today, from the work at M. I. T. on automated programmed drawing started in 1958. This has led to a concentration of effort on graphics and computer-aided drafting. Much research has been done on the mathematical description of curves, surfaces and volumes in a form suitable for engineering design. Work has been done on the automatic dimensioning of drawings, hidden line removal, the prob­lems of lofting, etc.


2020 ◽  
Vol 36 ◽  
pp. 101554
Author(s):  
Wenjin Li ◽  
Gary Mac ◽  
Nektarios Georgios Tsoutsos ◽  
Nikhil Gupta ◽  
Ramesh Karri

Sign in / Sign up

Export Citation Format

Share Document