Influence of Façade Area on Thermal Performance of Building for Cooling Purposes

2018 ◽  
Author(s):  
Hamad H. Almutairi ◽  
Abdulrahman Almutairi ◽  
Jaber H. Almutairi

Buildings account for significant energy consumption worldwide particularly in regions where energy patterns influenced primarily by weather. Air conditioning system became an essential evaluation factor during building design and construction. The level of curiosity about air conditioning system efficiency in terms of energy usage is increasing quickly. In Kuwait; which is a hot climate country; air conditioners account for 70% of total electrical power. Electricity in Kuwait is produced entirely by the non-renewable energy resources. This work aims to assess the potential electrical savings that could be acquired by reducing building’s façade area towards East-West directional orientation in Kuwait. For this purpose, a detached building model with uniform geometry; was simulated by Energy Plus Thermal Simulation Engine through its interface with DesignBuilder software. Two cases were developed for the analysis; both have the same simulation inputs. The only difference was the orientation of the facades. The results show a reduction of about 900 kWh cooling annually if the largest facades were positioned towards north and south. The obtained saving in annual basis is attributed to about 420 kWh electrical power. Equivalent CO2 emissions associated with the saved electrical energy from power plants in Kuwait were estimated. The resulted savings are promising for early decision making for prospective buildings to be built in future.

2020 ◽  
Vol 38 (7A) ◽  
pp. 984-991
Author(s):  
Krar M. Kuder ◽  
Hashim A. Hussein ◽  
Ali H. Numan

The present research paper is on photovoltaic air conditioning system using the direct drive method. The experimental system setup arranged in Iraq at Al-taje site at longitude 44.34 and latitude 33.432 during the summer season inside a room. The proposed off-grid system consists of an array of photovoltaic, battery used to store power, PWM (pulse width modulation) charge controller, and DC air cooler. During the examination of the system, proven success of this new type(dc air conditioner ) of client urges Iraq warm conditions as an alternative type used instead of the prevailing types of air conditioners (AC air conditioner )in Iraq which consume large amounts of electrical energy and gets a cooling system for the room full working on solar energy.                                                                                                                


2020 ◽  
Vol 10 (10) ◽  
pp. 3622 ◽  
Author(s):  
Adil Al-Falahi ◽  
Falah Alobaid ◽  
Bernd Epple

The electrical power consumption of refrigeration equipment leads to a significant influence on the supply network, especially on the hottest days during the cooling season (and this is besides the conventional electricity problem in Iraq). The aim of this work is to investigate the energy performance of a solar-driven air-conditioning system utilizing absorption technology under climate in Baghdad, Iraq. The solar fraction and the thermal performance of the solar air-conditioning system were analyzed for various months in the cooling season. It was found that the system operating in August shows the best monthly average solar fraction (of 59.4%) and coefficient of performance (COP) (of 0.52) due to the high solar potential in this month. Moreover, the seasonal integrated collector efficiency was 54%, providing a seasonal solar fraction of 58%, and the COP of the absorption chiller was 0.44, which was in limit, as reported in the literature for similar systems. A detailed parametric analysis was carried out to evaluate the thermal performance of the system and analyses, and the effect of design variables on the solar fraction of the system during the cooling season.


Author(s):  
Danial Mohammadi ◽  
Simin Nasrabadi

Background: One way to achieve a standard heating, ventilating, and air conditioning system with maximum satisfaction is to use a thermal index to identify and determine the thermal comfort of people. In this study we intend to evaluate thermal comfort based on PMV-PPD (Predicted Mean Vote/Predicted Percentage Dissatisfied) model in workers of screening center for COVID-19. Methods: The study period was from March 1 to October 31, 2020. In this study, we used the ISO 7730 model to determinate PMV-PPD index. PMV index was used to determine thermal comfort at different scales in Birjand city with arid and hot climate. All data were analyzed using R software (version 3.3.0) and IBM SPSS statistics softwares. Results: The maximum and minimum recorded physical PMV values in the study period were observed in June as (2.09 ± 0.03) and March as (-1.27 ± 0.14), respectively. The amplitude of the thermal sense in the study period was varied between slightly cool (-1.5) and warm (+2.5). The PPD in spring was 40% which indicated slightly warm to hot condition. Conclusions: The October was the only month during the study in which thermal stress was in comfort or neutral thermal condition.  Our results suggest that thermal comfort has dimensions and indices which are helpful in managing energy consumption.


2014 ◽  
Vol 699 ◽  
pp. 828-833 ◽  
Author(s):  
Sumeru ◽  
Markus ◽  
Farid Nasir Ani ◽  
Henry Nasution

Air conditioning system consumes approximately 50% of the total energy consumption of buildings. Split-type air conditioner is the most widely used in residential and commercial buildings. As a result, enhancement on the performance of the air conditioners will yield a significant energy savings. The use of ejector as an expansion device on the split-type air conditioners is one method to increase the system performance. Exergy analysis on a split-type air conditioner uses an ejector as an expansion device at room and outdoor temperatures of 24 °C and 34 °C, respectively, yielded the percentage of exergy reduction up to 40.6%. Also, the exergy losses on in the compressor had the highest impact on the performance improvement of the split-type air conditioner.


2014 ◽  
Vol 626 ◽  
pp. 177-183
Author(s):  
K. Thenmalar ◽  
S. Ramesh ◽  
K.S. Anuja

The electrical power system is considered as the most complex man-made systems mainly due to their wide geographical coverage. Electrical energy industries contributes environmental pollution which rise questions concern environmental protection and methods of eliminating or reducing pollution from power plants either by design or by operational strategies. Electric power plants are mainly aimed to operate al low fuel cost strategies .In this paper a Multi –Objective Economic Emission Load Dispatch problem is solved to minimize the emission of nitrogen oxides (NOx) , oxides of other fuels that release during generation of electricity and fuel cost considering both Thermal generators and Wind turbines. A large number of iterations and oscillation are those of the major concern in solving the economic load dispatch problem by using the BFO(bacterial foraging optimization) method. By applying BFO method the economic dispatch problem is optimized to minimize the total generation cost of a power system while satisfying various equality and inequality constraints. The effect of Wind power on overall emission is also investigated here using Quadratic programming by wolf’s method. This method has better convergence characteristic. Wolf’s method is an extended simplex procedure which can be applied to Quadratic programming problems in which all the problem variables are non-negative.


2019 ◽  
Vol 124 ◽  
pp. 01024
Author(s):  
Y. V. Vankov ◽  
A. K. Al–Okbi ◽  
M. H. Hasanen

The energy saving issues are becoming necessary worldwide, as excessive consumption of energy leads to the consumption of a larger amount of fuel, increases environmental pollution and negatively affects the ozone layer. In Iraq, in particular, the demand for central air conditioning systems and home air conditioners with high electrical capacity has become increasingly clear in the recent years. Air conditioning systems within residential and public buildings, as well as government facilities became a necessity for good internal comfort, which was driven by desertification, high temperature, air pollution and increased population, resulting in increased consumption of electric power and pressing of power plants. Aiming at usage of renewable energy sources, the proposed system uses solar collectors as auxiliary solar thermal compressors and integrate them with air conditioning systems. The proposed solution will increase the cooling system efficiency, reduce electricity consumption and pollution.


2018 ◽  
Vol 931 ◽  
pp. 920-925
Author(s):  
Zohrab Melikyan ◽  
Naira Egnatosyan ◽  
Siranush Egnatosyan

Centralized air conditioning systems are widely used in buildings at present. In these conditioners, the outside air gets required temperature, humidity, purity, and other features, necessary for creating comfort microclimate in inside areas of houses, and by the help of fans and air ducts the processed air moves to all rooms of a building. As a result, the creation and maintenance of comfort conditions in buildings become complicated and expensive activity. From this point of view, it is becoming more expedient to install local air conditioners in each room instead of single central one for the whole building. For this reason new local air conditioner is developed.


2019 ◽  
Vol 111 ◽  
pp. 01079
Author(s):  
Hikari Sakakibara ◽  
Takashi Akimoto ◽  
Hitomi Igarashi ◽  
Shunsuke Nakamura ◽  
Madoka Kimura

The “Strategic Energy Plan” implemented by the Cabinet of Japan in 2014 strives for zero energy building design for typical new construction by 2030. The present study focuses on a ductless and variable air conditioning system, using the Coanda effect, with the aim of reducing fan power, and saving of resources by reducing the space between the ceiling. In this study, we examined the air blowing method and evaluated thermal comfort using computational fluid dynamics as well as subjective perception of coolness in a midsize office. A draft zone was reduced by extending the interval between conditioned air outlets. However, if the extension of throw length was excessive, hot space would be formed near the air outlets, and there would be a risk of impacting thermal comfort. Moreover, we confirmed that the thermal comfort was generally favourable. In particular, perceived thermal comfort was better at the position in the office where the air flow landed on the upper body of the subjects. On the other hand, it decreased when the influence of the air flow was small, and at the point where air flow landed on the lower body of the subjects.


Author(s):  
Danial Salimizad ◽  
Chris McNevin ◽  
Stephen Harrison

Liquid-desiccant (LD) dehumidification technology has been used to extract moisture from humid air while attempting to consume less electricity than traditional air-conditioning methods. An evaporative cooling tower (ECT) was used as a cooling device to reject the latent heat gained by the system to regenerate the desiccant solution. The performance of an ECT was evaluated both experimentally and through TRNSYS simulations to investigate optimal operating conditions. The ECT often operated in humid conditions which resulted in reduced heat rejection rates and ineffective operation. To improve performance, cooling water storage (CWS) was investigated as a way to reduce ECT usage during periods of higher ambient humidity. To undertake this study, the complete LD system, incorporating CWS, was modelled in TRNSYS for a range of typical operating conditions. The results indicated that operation of the CWS system reduced the electrical power consumption and increased the electrical coefficient of performance (COPE) of the liquid desiccant air conditioning unit system by up to 16%. The total cooling rate improved by up to 6%. Smaller gains in COPT and solar fraction were also found in the simulation results.


Sign in / Sign up

Export Citation Format

Share Document