Evaluation of Anisotropic Pipe Steel Stress-Strain Relationships Influence on Strain Demand

Author(s):  
James D. Hart ◽  
Nasir Zulfiqar ◽  
Joe Zhou

Buried pipelines can be exposed to displacement-controlled environmental loadings (such as landslides, earthquake fault movements, etc.) which impose deformation demands on the pipeline. When analyzing pipelines for these load scenarios, the deformation demands are typically characterized based on the curvature and/or the longitudinal tension and compression strain response of the pipe. The term “strain demand” is used herein to characterize the calculated longitudinal strain response of a pipeline subject to environmentally-induced deformation demands. The shape of the pipe steel stress-strain relationship can have a significant effect on the pipe strain demands computed using pipeline deformation analyses for displacement-controlled loading conditions. In general, with sufficient levels of imposed deformation demand, a pipe steel stress-strain curve with a relatively abrupt or “sharp” elastic-to-plastic transition will tend to lead to larger strain demands than a stress-strain curve with a relatively rounded elastic-to-plastic transition. Similarly, a stress-strain curve with relatively low strain hardening modulus characteristics will tend to lead to larger strain demands than a stress-strain curve with relatively high strain hardening modulus characteristics. High strength UOE pipe can exhibit significant levels of anisotropy (i.e., the shapes of the stress-strain relationships in the longitudinal tension/compression and hoop tension/compression directions can be significantly different). To the extent that the stress-strain curves in the different directions can have unfavorable shape characteristics, it follows that anisotropy can also play an important role in pipeline strain demand evaluations. This paper summarizes a pipeline industry research project aimed at evaluation of the effects of anisotropy and the shape of pipe steel stress-strain relationships on pipeline strain demand for X80 and X100 UOE pipe. The research included: a review of pipeline industry literature on the subject matter; a discussion of pipe steel plasticity concepts for UOE pipe; characterization of the anisotropy and stress-strain curve shapes for both conventional and high strain pipe steels; development of representative analytical X80 and X100 stress-strain relationships; and evaluation of a large matrix of ground-movement induced pipeline deformation scenarios to evaluate key pipe stress-strain relationship shape and anisotropy parameters. The main conclusion from this work is that pipe steel specifications for high strength UOE pipe for strain-based design applications should be supplemented to consider shape-characterizing parameters such as the plastic complementary energy.

Author(s):  
Hideo Machida ◽  
Tetsuya Hamanaka ◽  
Yoshiaki Takahashi ◽  
Katsumasa Miyazaki ◽  
Fuminori Iwamatsu ◽  
...  

This paper describes a fracture assessment method for a pipe having multiple circumferential flaws. According to Fitness-for-Service (FFS) codes for nuclear facilities published by the Japanese Society of Mechanical Engineers (JSME), the fracture strength of a high-ductility pipe having a circumferential flaw is evaluated using the limit load assessment method assuming the elastic–perfectly-plastic stress–strain relationship. In this assessment, flow stress is used as a proportional stress. However, previous experimental results [1, 2, 3] show that a crack penetrates before the entire flawed pipe section reaches the flow stress. Therefore, stress concentration at a flaw was evaluated on the basis of the Dugdale model [4], and the fracture strength of the crack-ligament was evaluated. This model can predict test results with high accuracy when the ligament fracture strength is assumed to be tensile strength. Based on this examination, a fracture assessment method for pipes having multiple flaws was developed considering the stress concentration in the crack-ligament by using the realistic stress–strain relationship (Ramberg–Osgood-type stress–strain curve). The fracture strength of a multiple-flawed pipe estimated by the developed method was compared with previous experimental results. When the stress concentration in the crack-ligament was taken into consideration, the fracture strength estimated using the Ramberg–Osgood-type stress–strain curve was in good agreement with experimental results, confirming the validity of the proposed method.


2005 ◽  
Vol 40 (6) ◽  
pp. 599-607 ◽  
Author(s):  
X. P Huang

The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage models are based on different simplified material strain-hardening models, which assume linear strain-hardening or power strain-hardening or a combination of these strain-hardening models. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material is proposed. The model incorporates the von Mises yield criterion, an incompressible material, and the plane strain condition. Analytic expressions for the residual stress distribution have been derived. Experimental results show that the present model has a stronger curve-fitting ability and gives a more accurate prediction. Several other models are shown to be special cases of the general model presented in this paper. The parameters needed in the model are determined by fitting the actual tensile-compressive curve of the material, and the maximum strain of this curve should closely represent the maximum equivalent strain at the inner surface of the cylinder under maximum autofrettage pressure.


1977 ◽  
Vol 9 (6) ◽  
pp. 704-707 ◽  
Author(s):  
V. K. Babich ◽  
V. A. Pirogov ◽  
I. A. Vakulenko

2010 ◽  
Vol 163-167 ◽  
pp. 1762-1767 ◽  
Author(s):  
Xiang Liu ◽  
Jiang Tao Kong

According to the contrast test of LC30, LC40 lightweight aggregate concrete and C30, C40 common concrete , the text researched the mechanical property of lightweight aggregate concrete and ordinary concrete in the same strength grade and obtained the regularity of stress-strain curve of lightweight aggregate concrete in different strength grade. Then we contrasted the experimental results and planning model, analysed the difference, and suggested that the standards should improve the descent stage of the stress-strain curve of lightweight aggregate concrete combined with correlative experiments data, and give the equation of the descent stage of stress-strain curves. Concrete material in axial compression is the basic physical mechanical performance of concrete material, and is the main basis for researching bearing capacity and deformation of concrete construction. The stress-strain relationship is all-around macroscopic reaction of basal compressive property . There have been many experiments work about the stress-strain relationship of lightweight aggregate concrete at home and abroad , and found the peak strain of lightweight aggregate concrete is higher than that of ordinary concrete in the context of same peak stress .In this paper, on the basis of experimental investigations of lightweight aggregate concrete , aim at the stress-strain relationship ,we have take comparison experiment about LC30,LC40 lightweight aggregate concrete and C30,C40 ordinary concrete , and sort out stress-strain curve under the condition of the shaft center being compressed, so get the average tress-strain curve of LC30,LC40 lightweight aggregate concrete , and analyse the curve.


2013 ◽  
Vol 767 ◽  
pp. 144-149 ◽  
Author(s):  
Tei Saburi ◽  
Shiro Kubota ◽  
Yuji Wada ◽  
Tatsuya Kumaki ◽  
Masatake Yoshida

In this study, a high strain rate test method of a steel plate under blast loading from high explosive was designed and was conducted by a combined experimental/numerical approach to facilitate the estimation process for the dynamic stress-strain curve under practical strain rate conditions. The steel plate was subjected to a blast load, which was generated by Composition C4 explosive and the dynamic deformation of the plate was observed with a high-speed video camera. Time-deformation relations were acquired by image analysis. A numerical simulation for the dynamic behaviors of the plate identical to the experimental condition was conducted using a coupling analysis of finite element method (FEM) and discrete particle method (DPM). Explosives were modeled by discrete particles and the steel plate and other materials were modeled by finite element. The blast load on the plate was described fluid-structure interaction (FSI) between DPM and FEM. As inverse analysis scheme to estimate dynamic stress-strain curve, an evaluation using a quasistatic data was conducted. In addition, two types of approximations for stress-strain curve were assumed and optimized by least square method. One is a 2-piece approximation, and was optimized by least squares method using a yield stress and a tangent modulus as parameters. The other is a continuous piecewise linear approximation, in which a stress-strain curve was divided into some segments based on experimental time-deformation relation, and was sequentially optimized using youngs modulus or yield stress as parameter. The results showed that the piecewise approximation can gives reasonably agreement with SS curve obtained from the experiment.


2014 ◽  
Vol 567 ◽  
pp. 476-481
Author(s):  
Nasir Shafiq ◽  
Tehmina Ayub ◽  
Muhd Fadhil Nuruddin

To date, various predictive models for high strength concrete (HSC) have been proposed that are capable of generating complete stress-strain curves. These models were validated for HSC prepared with and without silica fume. In this paper, an investigation on these predictive models has been presented by applying them on two different series of HSC. The first series of HSC was prepared by utilizing 100% cement content, while second series was prepared by utilizing 90% cement and 10% Metakaolin. The compressive strength of the concrete was ranged from 71-87 MPa. For each series of HSC, total four cylinders of the size 100×200mm were cast to obtain the stress-strain curves at 28 days.It has been found that the pattern of the stress-strain curve of each cylinder among four cylinders of each series was different from other, in spite of preparing from the similar batch. When predictive models were applied to these cylinders using their test data then it was found that all models more or less deficient to accurately predict the stress-strain behavior.


Sign in / Sign up

Export Citation Format

Share Document