Bending Stiffener Design Through Structural Optimization
Bending stiffeners are very important ancillary equipments of umbilicals or flexible risers, since they protect the lines from overbending. Their design however is a complex task, since many load cases must be taken into account; the structure itself has a section that is variable with curvilinear coordinate. To aid the designer in this task, optimization algorithms can be used to automate the search for the best design. In this work an optimization algorithm is applied to the design of the bending stiffener. First, a bending stiffener model is created, which is capable of simulating different load case conditions and provide, as output, results of interest such as maximum curvature, deformation along the stiffener, shear forces and so on. Then, a bending stiffener design procedure is written as an optimization problem and, for that, objective function, restrictions and design variables defined. Study cases were performed, comparing a regular design with its optimized counterpart, under varying conditions.