Study on Structural Form Design of Trimaran Cross-Deck

Author(s):  
Huilong Ren ◽  
Chunbo Zhen ◽  
Chenfeng Li ◽  
Guoqing Feng

As a new high performance shipform, the structural form of trimaran is special and the stress concentration of its cross-deck structure is serious. According to the Rules for Classification of Trimaran Ships developed by Lloyd’s Register, the global finite element model of a trimaran is built. Main factors such as Thickness of bulkhead and wet deck, transitional forms and strengthening forms, which affect the stresses at local details are compared and discussed. Then the best structural form of trimaran cross-deck is given. The result can offer the reference for the trimaran’s design and development.

2015 ◽  
Vol 8 (17) ◽  
pp. 87
Author(s):  
David Fuentes ◽  
Marcos Salas ◽  
Gonzalo Tampier ◽  
Claudio Troncoso

Structural analysis of a multihull is relatively complex since the connecting structure introduces additional stress than those typical of a monohull. The aluminum trimaran presented in this work was designed within the framework of the research project “Conceptual Design of a High-performance Vessel for Passenger Transport in Chile’s Austral Zone”. The trimaran was structurally measured using the regulations of classification societies Germanischer Lloyd, Det Norske Veritas y LloydÅLs Register. For the scantlings obtained with each regulation a Finite Element Model was created and the structural analysis for the slamming and splitting moment events was made. The results were analyzed and the stress concentration zones were determined to compare them with admissible stresses and conclude whether the structural sizing adequately and safely responds to the design stresses.


1985 ◽  
Vol 52 (4) ◽  
pp. 801-805 ◽  
Author(s):  
P. R. Heyliger ◽  
J. N. Reddy

A quasi-three dimensional elasticity formulation and associated finite element model for the stress analysis of symmetric laminates with free-edge cap reinforcement are described. Numerical results are presented to show the effect of the reinforcement on the reduction of free-edge stresses. It is observed that the interlaminar normal stresses are reduced considerably more than the interlaminar shear stresses due to the free-edge reinforcement.


Author(s):  
Michaël Martinez ◽  
Sébastien Montalvo

Abstract The mooring of floating platforms is an important challenge for the offshore industry. It is an important part of the design engineering and, often, a critical point for the fatigue life assessment. A solution that could improve the fatigue life is to directly connect the mooring rope to the platform, without an intermediate chain. However this solution is not widespread and the behavior of a rope near such a connection is little known. The present paper proposes to better understand this behavior, thanks to a detailed finite element model of the rope. The study case is a steel wire rope directly connected to a floating wind turbine. A local finite element model of the rope has been built, where the wires are individually modeled with beam elements. One end of the rope is clamped, simulating the connection, while tension and cyclic bending oscillations are applied to the other end. A localized bending takes place near the connection, leading to stress concentration in the wires. The stress concentration and the local contact forces are calculated for each wire. These data are important entry parameters for a local failure or fatigue analysis. This latter is however not presented here. Despite IFPEN experience in the development of local finite element models of steel wire ropes, it is the first time that such a high capacity rope (MBL = 12 500 kN) is modeled. This is challenging because of the large diameter of the rope and the large number of wires. However this modeling approach is very valuable for such ropes, because the experimental tests are rare and very expensive.


2014 ◽  
Vol 912-914 ◽  
pp. 806-809
Author(s):  
Ming Feng Zheng ◽  
Yue Chen ◽  
Ya Lin Yan

Established a finite element model of the school bus based on the Hyper Mesh, take a finite element simulation about the various parts of the school bus parameters such as stress, displacement and deformation under 5 conditions. Through the analysis of the school bus to identify conditions displacement of stress more concentrated area as well as in operation, by optimizing improve the local structure of these regions,improve the stress concentration and safety.


Author(s):  
Bianca de Carvalho Pinheiro ◽  
Ilson Paranhos Pasqualino ◽  
Se´rgio Barros da Cunha

A nonlinear finite element model was developed to assess stress concentration factors induced by plain dents on steel pipelines subjected to cyclic internal pressure. The numerical model comprised small strain plasticity and large rotations. Six small-scale experimental tests were carried out to determine the strain behavior of steel pipe models during denting simulation followed by the application of cyclic internal pressure. The finite element model developed was validated through a correlation between numerical and experimental results. A parametric study was accomplished, with the aid of the numerical model, to evaluate stress concentration factors as function of the pipe and dent geometries. Finally, an analytical formulation to estimate stress concentration factors of dented pipelines under internal pressure was proposed. These stress concentration factors can be used in a high cycle fatigue evaluation through S-N curves.


2020 ◽  
Vol 68 (4) ◽  
pp. 269-282
Author(s):  
Hyunjun Shin ◽  
J. Stuart Bolton

The acoustical performance of a microperforated duct liner and a fibrous lining was compared to confirm that a microperforated panel lining can be used to re- place a fibrous liner as a sound attenuator in a duct. Fibrous materials are often used to line ducts in order to attenuate HVAC noise, for example. These treatments are often primarily useful in a limited frequency range owing to the characteristics of non-planar wave propagation in ducts. At the same time, microperforated mate- rials backed by a finite-depth air space are effective in a limited frequency range owing to the nature of the reactive impedance of this combination. Here, it will be shown that microperforated materials may be used to create duct linings that produce attenuation comparable with that of fibrous materials in the latter's high- performance region. The characteristics of the microperforated panel were studied based on the Maa model. To compare the performance of these two linings, theoret- ical, numerical and experimental tools were used. In the various case studies, both extended reaction and locally reacting treatments were considered. For the analyti- cal approach, Morse's theory was applied in the local reaction case. On the other hand, Scott's analysis was used to study the extended reaction case. In the experi- mental work, the transmission losses of various liner configurations were measured in a square impedance tube. To tune the performance of a microperforated sheet to reproduce that of a fibrous material, the hole size, porosity, thickness, density, and air-backing depth were modified. To validate the experimental and analytical data and to handle situations that are not easily modeled using an analytical approach, a finite element model was also used for the calculations. For the finite element model analysis, COMET/VISION and SAFE were used. Since that software does not include explicit microperforated material models, an alternative approach was used. The alternative model was based on the Attala and Sgard model for perforated panels. This alternative approach in which the perforated panel is modeled as a thin porous layer was successfully implemented in finite element form. Finally, it was demonstrated that the microperforated panel can successfully reproduce the acous- tical performance of glass fiber as a duct lining material.


2013 ◽  
Vol 36 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Wei Wei ◽  
Shenhui Liao ◽  
Shiyuan Shi ◽  
Jun Fei ◽  
Yifan Wang ◽  
...  

2016 ◽  
Vol 20 (1) ◽  
pp. 139-151
Author(s):  
Juechun Xu ◽  
Chengqing Wu ◽  
Jun Li ◽  
Jintao Cui

Ultra-high-performance fibre-reinforced concrete has exceptional mechanical properties including high compressive and tensile strength as well as high fracture energy. It has been proved to be much higher blast resistant than normal concrete. In this article, flexural behaviours of ultra-high-performance fibre-reinforced concrete columns were investigated through full-scale tests. Two 200 mm × 200 mm × 2500 mm columns with and without axial loading were investigated under three-point bending tests, and their load–displacement relationships were recorded and the moment curvatures were derived. The derived moment curvature relationships of ultra-high-performance fibre-reinforced concrete columns were then incorporated into a computationally efficient one-dimensional finite element model, which utilized Timoshenko beam theory, to determine flexural response of ultra-high-performance fibre-reinforced concrete columns under blast loading. After that, the one-dimensional finite element model was validated with the real blast testing data. The results show good correlation between the advanced finite element model and experimental results. The feasibility of utilizing the one-dimensional finite element model for simulating both high-strength reinforced concrete and ultra-high-performance fibre-reinforced concrete columns against blast loading conditions is confirmed.


1987 ◽  
Vol 109 (4) ◽  
pp. 411-420 ◽  
Author(s):  
R. Natarajan ◽  
G. E. O. Widera ◽  
P. Afshari

A finite element model is proposed to study the stresses in the neighborhood of a cylinder-cylinder intersection. In particular, diameter ratios greater than 0.5 are focused upon since little information is available in the ASME Boiler and Pressure Vessel Code or in the literature about the stress concentration for these geometries. The aim of the present work is to validate such a model for internal pressure loading. To accomplish this, various parametric finite element studies were conducted. The selected model is then validated by applying it to various available cylinder intersection models and comparing the results. The finite element results are further compared with a solution obtained using a shell theory.


Sign in / Sign up

Export Citation Format

Share Document