Time dependent thermo-mechanical behavior of thermally induced shape memory polymers

2009 ◽  
Author(s):  
Francisco Castro ◽  
H. Jerry Qi ◽  
Jason M. Hermiller ◽  
Ernie Havens
2008 ◽  
Vol 56 (5) ◽  
pp. 1730-1751 ◽  
Author(s):  
H. Jerry Qi ◽  
Thao D. Nguyen ◽  
Francisco Castro ◽  
Christopher M. Yakacki ◽  
Robin Shandas

2013 ◽  
Vol 3 (1) ◽  
pp. 49-50 ◽  
Author(s):  
Guoguang Niu

The term "shape memory effect" refers to the ability of a material to be deformed and fixed into a temporary shape, and to recover its original, permanent shape upon an external stimulus (1). Shape memory polymers have attracted much interest because of their unique properties, and applied tremendously in medical area, such as biodegradable sutures, actuators, catheters and smart stents (2, 3). Shape memory usually is a thermally induced process, although it can be activated by light illumination, electrical current, magnetic, or electromagnetic field (4-6). During the process, the materials are heated directly or indirectly above their glass transition temperature (Tg) or the melting temperature (Tm) in order to recover the original shape. Non-thermally induced shape memory polymers eliminate the temperature constrains and enable the manipulation of the shape recovered under ambient temperature (7, 8). Herein, we report a novel strategy of water induced shape memory, in which the formation and dissolution of poly(ethylene glycol) (PEG) crystal is utilized for the fixation and recovery of temporary deformation of hydrophilic polymer. This water-induced shape recovery is less sensitive to temperature, of which 95% deformation is fixed in circumstance and over 75% recovery is reached even at 0 oC.


Author(s):  
Shawn A. Chester ◽  
Vikas Srivastava ◽  
Claudio V. Di Leo ◽  
Lallit Anand

The most common shape-memory polymers are those in which the shape-recovery is thermally-induced. A body made from such a material may be subjected to large deformations at an elevated temperature above its glass transition temperature &Vthgr;g. Cooling the deformed body to a temperature below &Vthgr;g under active kinematical constraints fixes the deformed shape of the body. The original shape of the body may be recovered if the material is heated back to a temperature above &Vthgr;g without the kinematical constraints. This phenomenon is known as the shape-memory effect. If the shape recovery is partially constrained, the material exerts a recovery force and the phenomenon is known as constrained-recovery.


2008 ◽  
Vol 54 ◽  
pp. 96-102 ◽  
Author(s):  
Andreas Lendlein ◽  
Marc Behl

Most polymers used in clinical applications today are materials that have been developed originally for application areas other than biomedicine. On the other side, different biomedical applications are demanding different combinations of material properties and functionalities. Compared to the intrinsic material properties, a functionality is not given by nature but result from the combination of the polymer architecture and a suitable process. Examples for functionalities that play a prominent role in the development of multifunctional polymers for medical applications are biofunctionality (e.g. cell or tissue specificity), degradability, or shape-memory functionality. In this sense, an important aim for developing multifunctional polymers is tailoring of biomaterials for specific biomedical applications. Here the traditional approach, which is designing a single new homo- or copolymer, reaches its limits. The strategy, that is applied here, is the development of polymer systems whose macroscopic properties can be tailored over a wide range by variation of molecular parameters. The Shape-memory capability of a material is its ability to trigger a predefined shape change by exposure to an external stimulus. A change in shape initiated by heat is called thermally-induced shape-memory effect. Thermally, light-, and magnetically induced shape-memory polymers will be presented, that were developed especially for minimally invasive surgery and other biomedical applications. Furthermore triple-shape polymers will be introduced, that have the capability to perform two subsequent shape changes. Thus enabling more complex movements of a polymeric material.


2012 ◽  
Author(s):  
C. Azra ◽  
C. J. G. Plummer ◽  
J.-A. E. Månson

2013 ◽  
Vol 721 ◽  
pp. 169-172 ◽  
Author(s):  
Yu Gu ◽  
Shao Xiong Li

The viscoelastic behaviors of shape memory polymers have a significant influence on the function realization of this kind of smart materials. In this study, stress-strain hysteresis under uniaxial tension of epoxy shape memory polymers with varied curing agent contents and types were tested at different temperatures. The effects of the testing temperature, curing-agent type and content on the viscoelastic behaviors of the materials were discussed.


Sign in / Sign up

Export Citation Format

Share Document