Validity of 10-HZ GPS and Timing Gates for Assessing Maximum Velocity in Professional Rugby Union Players

2017 ◽  
Vol 12 (6) ◽  
pp. 836-839 ◽  
Author(s):  
Gregory Roe ◽  
Joshua Darrall-Jones ◽  
Christopher Black ◽  
William Shaw ◽  
Kevin Till ◽  
...  

Purpose:The purpose of this study was to investigate the validity of timing gates and 10-Hz global positioning systems (GPS) units (Catapult Optimeye S5) against a criterion measure (50-Hz radar gun) for assessing maximum sprint velocity (Vmax).Methods:Nine male professional rugby union players performed 3 maximal 40-m sprints with 3 min rest between efforts with Vmax assessed simultaneously via timing gates, 10-Hz GPSOpen (Openfield software), GPSSprint (Sprint software), and radar gun. Eight players wore 3 GPS units, while 1 wore a single unit during each sprint.Results:When compared with the radar gun, mean biases for GPSOpen, GPSSprint, and timing gates were trivial, small, and small, respectively. The typical error of the estimate (TEE) was small for timing gate and GPSOpen while moderate for GPSSprint. Correlations with radar gun were nearly perfect for all measures. Mean bias, TEE, and correlations between GPS units were trivial, small, and nearly perfect, respectively, while a small TEE existed when GPSOpenfield was compared with GPSSprint.Conclusion:Based on these findings, both 10-Hz GPS and timing gates provide valid measures of 40-m Vmax assessment compared with a radar gun. However, as error did exist between measures, the same testing protocol should be used when assessing 40-m Vmax over time. Furthermore, in light of the above results, it is recommended that when assessing changes in GPS-derived Vmax over time, practitioners should use the same unit for each player and perform the analysis with the same software, preferably Catapult Openfield.

2017 ◽  
Vol 12 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Padraic J Phibbs ◽  
Ben Jones ◽  
Gregory AB Roe ◽  
Dale B Read ◽  
Joshua Darrall-Jones ◽  
...  

Limited information is available regarding the training loads of adolescent rugby union players. One-hundred and seventy male players (age 16.1 ± 1.0 years) were recruited from 10 teams representing two age categories (under-16 and under-18) and three playing standards (school, club and academy). Global positioning systems, accelerometers, heart rate and session-rating of perceived exertion (s-RPE) methods were used to quantify mean session training loads. Session demands differed between age categories and playing standards. Under-18 academy players were exposed to the highest session training loads in terms of s-RPE (236 ± 42 AU), total distance (4176 ± 433 m), high speed running (1270 ± 288 m) and PlayerLoad™ (424 ± 56 AU). Schools players had the lowest session training loads in both respective age categories. Training loads and intensities increased with age and playing standard. Individual monitoring of training load is key to enable coaches to maximise player development and minimise injury risk.


2013 ◽  
Vol 22 (2) ◽  
pp. 122-129 ◽  
Author(s):  
Laura C. Reid ◽  
Jason R. Cowman ◽  
Brian S. Green ◽  
Garrett F. Coughlan

Global positioning systems (GPS) are widely used in sport settings to evaluate the physical demands on players in training and competition. The use of these systems in the design and implementation of rehabilitation and return-to-running programs has not yet been elucidated.Objective:To demonstrate the application of GPS technology in the management of return to play in elite-club Rugby Union.Design:Case series.Setting:Professional Rugby Union club team.Participants:8 elite Rugby Union players (age 27.86 ± 4.78 y, height 1.85 ± 0.08 m, weight 99.14 ± 9.96 kg).Intervention:Players wore GPS devices for the entire duration of a club game.Main Outcome Measures:Variables of locomotion speed and distance were measured.Results:Differences in physical demands between playing positions were observed for all variables.Conclusions:An analysis of the position-specific physical demands measured by GPS provides key information regarding the level and volume of loads sustained by a player in a game environment. Using this information, sports-medicine practitioners can develop rehabilitation and return-to-running protocols specific to the player position to optimize safe return to play.


PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0195197 ◽  
Author(s):  
Daniel J. Cunningham ◽  
David A. Shearer ◽  
Neil Carter ◽  
Scott Drawer ◽  
Ben Pollard ◽  
...  

2017 ◽  
Vol 12 (8) ◽  
pp. 1039-1045 ◽  
Author(s):  
Jace A. Delaney ◽  
Heidi R. Thornton ◽  
John F. Pryor ◽  
Andrew M. Stewart ◽  
Ben J. Dascombe ◽  
...  

Purpose:To quantify the duration and position-specific peak running intensities of international rugby union for the prescription and monitoring of specific training methodologies.Methods:Global positioning systems (GPS) were used to assess the activity profile of 67 elite-level rugby union players from 2 nations across 33 international matches. A moving-average approach was used to identify the peak relative distance (m/min), average acceleration/deceleration (AveAcc; m/s2), and average metabolic power (Pmet) for a range of durations (1–10 min). Differences between positions and durations were described using a magnitude-based network.Results:Peak running intensity increased as the length of the moving average decreased. There were likely small to moderate increases in relative distance and AveAcc for outside backs, halfbacks, and loose forwards compared with the tight 5 group across all moving-average durations (effect size [ES] = 0.27–1.00). Pmet demands were at least likely greater for outside backs and halfbacks than for the tight 5 (ES = 0.86–0.99). Halfbacks demonstrated the greatest relative distance and Pmet outputs but were similar to outside backs and loose forwards in AveAcc demands.Conclusions:The current study has presented a framework to describe the peak running intensities achieved during international rugby competition by position, which are considerably higher than previously reported whole-period averages. These data provide further knowledge of the peak activity profiles of international rugby competition, and this information can be used to assist coaches and practitioners in adequately preparing athletes for the most demanding periods of play.


2011 ◽  
Vol 6 (3) ◽  
pp. 295-310 ◽  
Author(s):  
Robert J. Aughey

Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.


2019 ◽  
Vol 40 (06) ◽  
pp. 385-389 ◽  
Author(s):  
Adam Beard ◽  
Ryan Chambers ◽  
Gregoire P. Millet ◽  
Franck Brocherie

AbstractThe purpose of this study was to compare the game movement demands between professional club and senior international rugby union players. Data were obtained from 188 players from 4 professional club teams (Rabo Direct Pro12) and the affiliated international team during the 2014–15 season. Players were tracked by global positioning system (GPS) sampled at 10 Hz and were categorized into 6 different positional groups (front row forwards, FRF; second row forwards, SRF; back row forwards, BRF; half backs, HB; centres, C; outside backs, OB) and separated into playing standard (club vs. international level). Data on distance, distance per minute, high speed running, maximum velocity, sprint distance and efforts as well as repeated high-intensity locomotion efforts (RHILE) were collected. Significant effects (P<0 .05) between club and international were found for RHILE in all 6 positional groupings with a higher number of RHILE in international vs. club games. Significantly (P<0.05) greater total distance and meterage were also shown in international compared to club for OB position. The RHILE differences between club and international games whatever the positions appear of practical relevance for coaches and performance staff to concentrate on training protocols to enhance this quality as well as evaluation methods.


2010 ◽  
Vol 5 (4) ◽  
pp. 448-458 ◽  
Author(s):  
Matthew D. Portas ◽  
Jamie A. Harley ◽  
Christopher A. Barnes ◽  
Christopher J. Rush

Purpose:The study aimed to analyze the validity and reliability of commercially available nondifferential Global Positioning System (NdGPS) devices for measures of total distance during linear, multidirectional and soccer-specific motion at 1-Hz and 5-Hz sampling frequencies.Methods:Linear (32 trials), multidirectional (192 trials) and soccer-specific courses (40 trials) were created to test the validity (mean ± 90% confidence intervals), reliability (mean ± 90% confidence intervals) and bias (mean ± 90% confidence intervals) of the NdGPS devices against measured distance. Standard error of the estimate established validity, reliability was determined using typical error and percentage bias was established.Results:The 1-Hz and 5-Hz data ranged from 1.3% ± 0.76 to 3.1% ± 1.37 for validity and 2.03% ± 1.31 to 5.31% ± 1.2 for reliability for measures of linear and soccer-specific motion. For multidirectional activity, data ranged from 1.8% ± 0.8 to 6.88% ± 2.99 for validity and from 3.08% ± 1.34 to 7.71% ± 1.65 for reliability. The 1-Hz underestimated some complex courses by up to 11%.Conclusions:1-Hz and 5-Hz NdGPS could be used to quantify distance in soccer and similar field-based team sports. Both 1-Hz and 5-Hz have a threshold beyond which reliability is compromised. 1-Hz also underestimates distance and is less valid in more complex courses.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lee A. Bridgeman ◽  
Nicholas D. Gill

Abstract Background Global positioning systems (GPS) imbedded with accelerometer systems (AS) are used in rugby union (RU) to collect information on absolute and relative distances, distances in different speed zones, high-speed running (HSR) distances, repeated high-intensity efforts (RHIE) and collisions and impacts. This information can be used to monitor match play which can then be used to plan training sessions. The objective of this review was to conduct a systematic review of studies which have reported the use of GPS and AS. Methods A systematic review of the use of GPS and AS in both age-grade and senior rugby was conducted. The authors systematically searched electronic databases from January 2010 until March 2020. Keywords included rugby union, GPS, global position* and microtechnology. Results A total of 51 studies met the eligibility criteria and were included in this review. There was a total of 34 studies utilising GPS and AS in senior RU players (mean ± SD; age 26.2 ± 1.9 years; height 185.7 ± 2.6 cm; mass 101.3 ± 4.2 kg) and 17 studies in age-grade RU players (mean ± SD; age 17.6 ± 1.5 years; height 182.1 ± 3.3 cm; mass 87.1 ± 8.6 kg). The results of this review highlighted that there are differences between backs and forwards and within these positions in these groups during both match play and training sessions. The backs covered greater total absolute, relative and HSR distance compared to forwards. Forwards are involved in more collisions and impacts than backs. When investigating the most intense periods of match play, studies in this review highlighted that the demands during these periods outweigh the average demands of the game. It was proposed that a rolling average over different time epochs is the best way to assess this and ensure that the most intense periods of play are assessed and monitored. Conclusions The information highlighted in this review can be used to help coaches assess performances in match play, allow them to plan appropriate training sessions and monitor training load.


2012 ◽  
Vol 2 (3 - 4) ◽  
pp. 117
Author(s):  
Jeison Daniel Salazar Pachón ◽  
David Armando Chaparro Obando ◽  
Nicolás Tordi

<p>El presente estudio examinó  la confiabilidad de los registros de dos sistemas de posicionamiento global (<em>global positioning systems  </em>[GPS]), Garmin310XT y FRWDB600,  sobre  las distancias  recorridas a diferentes  velocidades,  tras un protocolo a pie y otro  en bicicleta realizados  en una pista atlética.  Esta información se comparó con el trayecto  real de recorrido, hecho a partir  del cálculo: <em>ritmo de recorrido (r) = distancia recorrida (d) x tiempo  de recorri- do, </em>y se controló con un metrónomo Sport Beeper. Los participantes fueron dos jóvenes de edad  media  22 años  ± 1, activos  físicamente. En los resultados, se observaron diferencias  entre los registros de ambos sistemas GPS; el protocolo a pie Garmin tuvo un porcentaje de concordancia de 101,1%, mientras que FRWD presentó  103%. En el protocolo en bicicleta se obtuvo 103,4% y 101,6%, respectivamente. Se concluyó  que el uso de GPS es más fiable cuando  las velocidades  de desplazamiento humano son bajas  o moderadas  para  el sistema Garmin  (7-14 km/h), ya que al ser más altas la fiabilidad  de la información podría  ser menor, mientras  que el sistema FRWD presentó  mayor confiabilidad en velocidades moderadas (14-22 km/h).</p>


2011 ◽  
Vol 1 (2) ◽  
pp. 117
Author(s):  
Jeison Daniel Salazar Pachón ◽  
David Armando Chaparro Obando ◽  
Nicolás Tordi

El presente estudio examinó  la confiabilidad de los registros de dos sistemas de posicionamiento global (<em>global positioning systems  </em>[GPS]), Garmin310XT y FRWDB600,  sobre  las distancias  recorridas a diferentes  velocidades,  tras un protocolo a pie y otro  en bicicleta realizados  en una pista atlética.  Esta información se comparó con el trayecto  real de recorrido, hecho a partir  del cálculo: <em>ritmo de recorrido (r) = distancia recorrida (d) x tiempo  de recorrido, </em>y se controló con un metrónomo Sport Beeper. Los participantes fueron dos jóvenes de edad  media  22 años  ± 1, activos  físicamente. En los resultados, se observaron diferencias  entre los registros de ambos sistemas GPS; el protocolo a pie Garmin tuvo un porcentaje de concordancia de 101,1%, mientras  que FRWD presentó  103%. En el protocolo en bicicleta se obtuvo 103,4% y 101,6%, respectivamente. Se concluyó  que el uso de GPS es más fiable cuando  las velocidades  de desplazamiento humano son bajas  o mo- deradas  para  el sistema Garmin  (7-14 km/h), ya que al ser más altas la fiabilidad  de la información podría  ser menor, mientras  que el sistema FRWD presentó  mayor confiabilidad en velocidades moderadas (14-22 km/h).


Sign in / Sign up

Export Citation Format

Share Document