scholarly journals Azole Affinity of Sterol 14α-Demethylase (CYP51) Enzymes from Candida albicans and Homo sapiens

2012 ◽  
Vol 57 (3) ◽  
pp. 1352-1360 ◽  
Author(s):  
Andrew G. Warrilow ◽  
Josie E. Parker ◽  
Diane E. Kelly ◽  
Steven L. Kelly

ABSTRACTCandida albicansCYP51 (CaCYP51) (Erg11), full-lengthHomo sapiensCYP51 (HsCYP51), and truncated Δ60HsCYP51 were expressed inEscherichia coliand purified to homogeneity. CaCYP51 and both HsCYP51 enzymes bound lanosterol (Ks, 14 to 18 μM) and catalyzed the 14α-demethylation of lanosterol usingHomo sapienscytochrome P450 reductase and NADPH as redox partners. Both HsCYP51 enzymes bound clotrimazole, itraconazole, and ketoconazole tightly (dissociation constants [Kds], 42 to 131 nM) but bound fluconazole (Kd, ∼30,500 nM) and voriconazole (Kd, ∼2,300 nM) weakly, whereas CaCYP51 bound all five medical azole drugs tightly (Kds, 10 to 56 nM). Selectivity for CaCYP51 over HsCYP51 ranged from 2-fold (clotrimazole) to 540-fold (fluconazole) among the medical azoles. In contrast, selectivity for CaCYP51 over Δ60HsCYP51 with agricultural azoles ranged from 3-fold (tebuconazole) to 9-fold (propiconazole). Prothioconazole bound extremely weakly to CaCYP51 and Δ60HsCYP51, producing atypical type I UV-visible difference spectra (Kds, 6,100 and 910 nM, respectively), indicating that binding was not accomplished through direct coordination with the heme ferric ion. Prothioconazole-desthio (the intracellular derivative of prothioconazole) bound tightly to both CaCYP51 and Δ60HsCYP51 (Kd, ∼40 nM). These differences in binding affinities were reflected in the observed 50% inhibitory concentration (IC50) values, which were 9- to 2,000-fold higher for Δ60HsCYP51 than for CaCYP51, with the exception of tebuconazole, which strongly inhibited both CYP51 enzymes. In contrast, prothioconazole weakly inhibited CaCYP51 (IC50, ∼150 μM) and did not significantly inhibit Δ60HsCYP51.

1990 ◽  
Vol 45 (5) ◽  
pp. 558-564 ◽  
Author(s):  
Donald E. Moreland ◽  
Frederick T. Corbin ◽  
William P. Novitzky ◽  
Carol E. Parker ◽  
Kenneth B. Tomer

A microsomal fraction isolated from the shoots of 3- to 4-day-old, dark-grown, grain sorghum (Sorghum bicolor cv. Funk G 522 D R ) seedlings was characterized. The preparations had a cytochrome P-450 content that varied from approximately 90 to 150 pmol P-450/mg protein with cytochrome P-420 varying from 0 to 3% of the P-450 content. Type I difference spectra were formed with cinnamic acid and metolachlor, and a type II spectrum was formed with tetcyclacis. In short-term assays with [14C]metolachlor as substrate, the preparations produced a single time-dependent product that separated on silica gel TLC plates developed in benzene/acetone (2:1, v/v). RF values for metolachlor and the metabolite were approximately 0.70 and 0.48, respectively. The microsomal reaction required N A D P H and oxygen, and was inhibited by carbon monoxide, with the inhibition being partially reversed by actinic light. Compounds known to inhibit the activity of cytochrome P-450 monooxygenases (piperonyl butoxide, tetcyclacis, and tridiphane) also prevented formation of the metabolite. Identity of the metabolite was confirmed by TLC and positive ion thermospray LC/MS to be 2-chloro-N-(2-ethyl-6- methylphenyl)-N-(2-hydroxy-l-methylethyl)acetamide. Hence, the reaction catalyzed by the sorghum microsomes involved O-demethylation of the methoxypropyl side chain of metolachlor.


2015 ◽  
Vol 83 (5) ◽  
pp. 1940-1948 ◽  
Author(s):  
Elena Gabrielli ◽  
Eva Pericolini ◽  
Eugenio Luciano ◽  
Samuele Sabbatini ◽  
Elena Roselletti ◽  
...  

We recently demonstrated that the secreted aspartyl proteinases (Saps), Sap2 and Sap6, ofCandida albicanshave the potential to induce the canonical activation of the NLRP3 inflammasome, leading to the secretion of interleukin-1β (IL-1β) and IL-18 via caspase-1 activation. We also observed that the activation of caspase-1 is partially independent from the NLRP3 activation pathway. In this study, we examined whether Sap2 and Sap6 are also able to activate the noncanonical inflammasome pathway in murine macrophages. Our data show that both Sap2 and Sap6 can activate caspase-11 through type I interferon (IFN) production. Caspase-11 cooperates to activate caspase-1, with a subsequent increase of IL-1β secretion. Endocytosis and internalization of Saps are required for the induction of type I IFN production, which is essential for induction of noncanonical inflammasome activation. Our study indicates a sophisticated interplay between caspase-1 and caspase-11 that connects the canonical and noncanonical pathways of inflammasome activation in response toC. albicansSaps.


2014 ◽  
Vol 58 (12) ◽  
pp. 7121-7127 ◽  
Author(s):  
A. G. S. Warrilow ◽  
C. M. Hull ◽  
J. E. Parker ◽  
E. P. Garvey ◽  
W. J. Hoekstra ◽  
...  

ABSTRACTThe binding and cytochrome P45051 (CYP51) inhibition properties of a novel antifungal compound, VT-1161, against purified recombinantCandida albicansCYP51 (ERG11) andHomo sapiensCYP51 were compared with those of clotrimazole, fluconazole, itraconazole, and voriconazole. VT-1161 produced a type II binding spectrum withCandida albicansCYP51, characteristic of heme iron coordination. The binding affinity of VT-1161 forCandida albicansCYP51 was high (dissociation constant [Kd], ≤39 nM) and similar to that of the pharmaceutical azole antifungals (Kd, ≤50 nM). In stark contrast, VT-1161 at concentrations up to 86 μM did not perturb the spectrum of recombinant human CYP51, whereas all the pharmaceutical azoles bound to human CYP51. In reconstitution assays, VT-1161 inhibitedCandida albicansCYP51 activity in a tight-binding fashion with a potency similar to that of the pharmaceutical azoles but failed to inhibit the human enzyme at the highest concentration tested (50 μM). In addition, VT-1161 (MIC = 0.002 μg ml−1) had a more pronounced fungal sterol disruption profile (increased levels of methylated sterols and decreased levels of ergosterol) than the known CYP51 inhibitor voriconazole (MIC = 0.004 μg ml−1). Furthermore, VT-1161 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. In summary, VT-1161 potently inhibitedCandida albicansCYP51 and culture growth but did not inhibit human CYP51, demonstrating a >2,000-fold selectivity. This degree of potency and selectivity strongly supports the potential utility of VT-1161 in the treatment ofCandidainfections.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


2015 ◽  
Vol 83 (7) ◽  
pp. 2614-2626 ◽  
Author(s):  
Rohitashw Kumar ◽  
Darpan Saraswat ◽  
Swetha Tati ◽  
Mira Edgerton

Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually withC. albicanscells overexpressing Sap6 (SAP6OE and a Δsap8strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6strain was attenuated. These hypervirulent strains had highly aggregative colony structurein vitroand higher secreted proteinase activity; however, the levels of proteinase activity ofC. albicansSaps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6OE and Δsap8cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increasedC. albicansadhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis.


2013 ◽  
Vol 20 (9) ◽  
pp. 1440-1448 ◽  
Author(s):  
Michael H. Kogut ◽  
Kenneth J. Genovese ◽  
Haiqi He ◽  
Christina L. Swaggerty ◽  
Yiwei Jiang

ABSTRACTWe have been investigating modulation strategies tailored around the selective stimulation of the host's immune system as an alternative to direct targeting of microbial pathogens by antibiotics. One such approach is the use of a group of small cationic peptides (BT) produced by a Gram-positive soil bacterium,Brevibacillus texasporus. These peptides have immune modulatory properties that enhance both leukocyte functional efficiency and leukocyte proinflammatory cytokine and chemokine mRNA transcription activitiesin vitro. In addition, when provided as a feed additive for just 4 days posthatch, BT peptides significantly induce a concentration-dependent protection against cecal and extraintestinal colonization bySalmonella entericaserovar Enteritidis. In the present studies, we assessed the effects of feeding BT peptides on transcriptional changes on proinflammatory cytokines, inflammatory chemokines, and Toll-like receptors (TLR) in the ceca of broiler chickens with and withoutS. Enteritidis infection. After feeding a BT peptide-supplemented diet for the first 4 days posthatch, chickens were then challenged withS. Enteritidis, and intestinal gene expression was measured at 1 or 7 days postinfection (p.i.) (5 or 11 days of age). Intestinal expression of innate immune mRNA transcripts was analyzed by quantitative real-time PCR (qRT-PCR). Analysis of relative mRNA expression showed that a BT peptide-supplemented diet did not directly induce the transcription of proinflammatory cytokine, inflammatory chemokine, type I/II interferon (IFN), or TLR mRNA in chicken cecum. However, feeding the BT peptide-supplemented diet primed cecal tissue for increased (P≤ 0.05) transcription of TLR4, TLR15, and TLR21 upon infection withS. Enteritidis on days 1 and 7 p.i. Likewise, feeding the BT peptides primed the cecal tissue for increased transcription of proinflammatory cytokines (interleukin 1β [IL-1β], IL-6, IL-18, type I and II IFNs) and inflammatory chemokine (CxCLi2) in response toS. Enteritidis infection 1 and 7 days p.i. compared to the chickens fed the basal diet. These small cationic peptides may prove useful as alternatives to antibiotics as local immune modulators in neonatal poultry by providing prophylactic protection againstSalmonellainfections.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Namkha Nguyen ◽  
Morgan M. F. Quail ◽  
Aaron D. Hernday

ABSTRACT Candida albicans is the most common fungal pathogen of humans. Historically, molecular genetic analysis of this important pathogen has been hampered by the lack of stable plasmids or meiotic cell division, limited selectable markers, and inefficient methods for generating gene knockouts. The recent development of clustered regularly interspaced short palindromic repeat(s) (CRISPR)-based tools for use with C. albicans has opened the door to more efficient genome editing; however, previously reported systems have specific limitations. We report the development of an optimized CRISPR-based genome editing system for use with C. albicans. Our system is highly efficient, does not require molecular cloning, does not leave permanent markers in the genome, and supports rapid, precise genome editing in C. albicans. We also demonstrate the utility of our system for generating two independent homozygous gene knockouts in a single transformation and present a method for generating homozygous wild-type gene addbacks at the native locus. Furthermore, each step of our protocol is compatible with high-throughput strain engineering approaches, thus opening the door to the generation of a complete C. albicans gene knockout library. IMPORTANCE Candida albicans is the major fungal pathogen of humans and is the subject of intense biomedical and discovery research. Until recently, the pace of research in this field has been hampered by the lack of efficient methods for genome editing. We report the development of a highly efficient and flexible genome editing system for use with C. albicans. This system improves upon previously published C. albicans CRISPR systems and enables rapid, precise genome editing without the use of permanent markers. This new tool kit promises to expedite the pace of research on this important fungal pathogen.


2014 ◽  
Vol 59 (2) ◽  
pp. 1341-1343 ◽  
Author(s):  
Nathan P. Wiederhold ◽  
Laura K. Najvar ◽  
Annette W. Fothergill ◽  
Rosie Bocanegra ◽  
Marcos Olivo ◽  
...  

ABSTRACTWe evaluated thein vitroandin vivoactivities of the investigational arylamidine T-2307 against echinocandin-resistantCandida albicans. T-2307 demonstrated potentin vitroactivity, and daily subcutaneous doses between 0.75 and 6 mg/kg of body weight significantly improved survival and reduced fungal burden compared to placebo control and caspofungin (10 mg/kg/day) in mice with invasive candidiasis caused by an echinocandin-resistant strain. Thus, T-2307 may have potential use in the treatment of echinocandin-resistantC. albicansinfections.


Sign in / Sign up

Export Citation Format

Share Document