scholarly journals The Complete Genome of Comamonas testosteroni Reveals Its Genetic Adaptations to Changing Environments

2009 ◽  
Vol 75 (21) ◽  
pp. 6812-6819 ◽  
Author(s):  
Ying-Fei Ma ◽  
Yun Zhang ◽  
Jia-Yue Zhang ◽  
Dong-Wei Chen ◽  
Yongqian Zhu ◽  
...  

ABSTRACT Members of the gram-negative, strictly aerobic genus Comamonas occur in various environments. Here we report the complete genome of Comamonas testosteroni strain CNB-2. Strain CNB-2 has a circular chromosome that is 5,373,643 bp long and has a G+C content of 61.4%. A total of 4,803 open reading frames (ORFs) were identified; 3,514 of these ORFs are functionally assigned to energy production, cell growth, signal transduction, or transportation, while 866 ORFs encode hypothetical proteins and 423 ORFs encode purely hypothetical proteins. The CNB-2 genome has many genes for transportation (22%) and signal transduction (6%), which allows the cells to respond and adapt to changing environments. Strain CNB-2 does not assimilate carbohydrates due to the lack of genes encoding proteins involved in glycolysis and pentose phosphate pathways, and it contains many genes encoding proteins involved in degradation of aromatic compounds. We identified 66 Tct and nine TRAP-T systems and a complete tricarboxylic acid cycle, which may allow CNB-2 to take up and metabolize a range of carboxylic acids. This nutritional bias for carboxylic acids and aromatic compounds enables strain CNB-2 to occupy unique niches in environments. Four different sets of terminal oxidases for the respiratory system were identified, and they putatively functioned at different oxygen concentrations. This study conclusively revealed at the genomic level that the genetic versatility of C. testosteroni is vital for competition with other bacteria in its special niches.

2017 ◽  
Vol 5 (14) ◽  
Author(s):  
Yan-xia Gao ◽  
Yu-yan Zhou ◽  
Ying Xie ◽  
Man Wang ◽  
Shu-juan Wang ◽  
...  

ABSTRACT Members of the genus Actinomyces are strongly associated with human diseases. We present here the complete genome sequence of Actinomyces hongkongensis HKU8T, which consists of one circular chromosome. The strain characteristically contains various genes encoding for enzymes involved in arylamidase utilization.


2015 ◽  
Vol 3 (5) ◽  
Author(s):  
Jordan M. Sloan ◽  
Jennifer L. Keene ◽  
Jesse L. Cahill ◽  
Eric S. Rasche ◽  
Gabriel F. Kuty Everett

Caulobacter crescentusis a water-dwelling bacterium known to have a dimorphic life cycle. Here, we announce the complete genome of Seuss, aC. crescentusicosahedral siphophage, and describe key features. Seuss is unique among phages deposited in GenBank, with genes encoding novel hypothetical proteins composing 45% of its genome.


2020 ◽  
Vol 9 (41) ◽  
Author(s):  
Jun Ho Lee ◽  
Pyung Cheon Lee

ABSTRACT A novel Psychrobacter sp. strain, AJ006, was isolated from Antarctic soil. Its complete genome sequence consists of a single circular chromosome (3,032,533 bp; G+C content, 44.0%) and a single linear plasmid (49,070 bp; G+C content, 41.7%). Chromosomal genes encoding carbonic anhydrase and urease, key enzymes in a biomineralization process, were predicted.


2020 ◽  
Vol 9 (41) ◽  
Author(s):  
Soon Jae Kwon ◽  
Pyung Cheon Lee

ABSTRACT Sphingobium sp. strain HAL-16, which was isolated from Antarctic soil samples, synthesizes a yellow pigment. The complete genome consists of a single circular chromosome (4,372,398 bp, with a G+C content of 62.7%) and a single circular plasmid (57,025 bp, with a G+C content of 59.4%). Five genes encoding carotenogenic enzymes were identified, suggesting that the yellow pigment is a hydroxy/keto-β-carotene.


2020 ◽  
Vol 8 (3) ◽  
pp. 313
Author(s):  
Emma D. Dewey ◽  
Lynn M. Stokes ◽  
Brad M. Burchell ◽  
Kathryn N. Shaffer ◽  
Austin M. Huntington ◽  
...  

Despite significant interest and past work to elucidate the phylogeny and photochemistry of species of the Heliobacteriaceae, genomic analyses of heliobacteria to date have been limited to just one published genome, that of the thermophilic species Heliobacterium (Hbt.) modesticaldum str. Ice1T. Here we present an analysis of the complete genome of a second heliobacterium, Heliorestis (Hrs.) convoluta str. HHT, an alkaliphilic, mesophilic, and morphologically distinct heliobacterium isolated from an Egyptian soda lake. The genome of Hrs. convoluta is a single circular chromosome of 3.22 Mb with a GC content of 43.1% and 3263 protein-encoding genes. In addition to culture-based observations and insights gleaned from the Hbt. modesticaldum genome, an analysis of enzyme-encoding genes from key metabolic pathways supports an obligately photoheterotrophic lifestyle for Hrs. convoluta. A complete set of genes encoding enzymes for propionate and butyrate catabolism and the absence of a gene encoding lactate dehydrogenase distinguishes the carbon metabolism of Hrs. convoluta from its close relatives. Comparative analyses of key proteins in Hrs. convoluta, including cytochrome c553 and the Fo alpha subunit of ATP synthase, with those of related species reveal variations in specific amino acid residues that likely contribute to the success of Hrs. convoluta in its highly alkaline environment.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 171-175
Author(s):  
Artem Khlebnikov ◽  
Falilou Samb ◽  
Paul Péringer

p-toluenesulphonic acid degradation by Comamonas testosteroni T-2 in multi-species biofilms was studied in a fixed bed biofilm reactor. The polypropylene static mixer elements (Sulzer Chemtech Ltd., Switzerland) were used as a support matrix for biofilm formation. Biofilm respiration was estimated using the dynamic gassing-out oxygen uptake method. A strong relation between oxygen uptake and reactor degradation efficiency was observed, because p-toluenesulphonate degradation is a strictly aerobic process. This technique also allowed us to estimate the thickness of the active layer in the studied system. The mean active thickness was in order of 200 μm, which is close to maximum oxygen penetration depth in biofilms. A transient mathematical model was established to evaluate oxygen diffusitivity in non-steady-state biofilms. Based on the DO concentration profiles, the oxygen diffusion coefficient and the maximum respiration activity were calculated. The oxygen diffusion coefficient obtained (2 10−10-1.2 10−9 m2 s−1) is in good agreement with published values. The DO diffusion coefficient varied with biofilm development. This may be, most likely, due to the biofilm density changes during the experiments. The knowledge of diffusivity changes in biofilms is particularly important for removal capacity estimation and appropriate reactor design.


1993 ◽  
Vol 13 (9) ◽  
pp. 5805-5813 ◽  
Author(s):  
M M Wang ◽  
R Y Tsai ◽  
K A Schrader ◽  
R R Reed

Genes which mediate odorant signal transduction are expressed at high levels in neurons of the olfactory epithelium. The molecular mechanism governing the restricted expression of these genes likely involves tissue-specific DNA binding proteins which coordinately activate transcription through sequence-specific interactions with olfactory promoter regions. We have identified binding sites for the olfactory neuron-specific transcription factor, Olf-1, in the sequences surrounding the transcriptional initiation site of five olfactory neuron-specific genes. The Olf-1 binding sites described define the consensus sequence YTCCCYRGGGAR. In addition, we have identified a second binding site, the U site, in the olfactory cyclic nucleotide gated channel and type III cyclase promoters, which binds factors present in all tissue examined. These experiments support a model in which expression of Olf-1 in the sensory neurons coordinately activates a set of olfactory neuron-specific genes. Furthermore, expression of a subset of these genes may be modulated by additional binding factors.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
So-Ra Han ◽  
Byeollee Kim ◽  
Jong Hwa Jang ◽  
Hyun Park ◽  
Tae-Jin Oh

Abstract Background The Arthrobacter group is a known set of bacteria from cold regions, the species of which are highly likely to play diverse roles at low temperatures. However, their survival mechanisms in cold regions such as Antarctica are not yet fully understood. In this study, we compared the genomes of 16 strains within the Arthrobacter group, including strain PAMC25564, to identify genomic features that help it to survive in the cold environment. Results Using 16 S rRNA sequence analysis, we found and identified a species of Arthrobacter isolated from cryoconite. We designated it as strain PAMC25564 and elucidated its complete genome sequence. The genome of PAMC25564 is composed of a circular chromosome of 4,170,970 bp with a GC content of 66.74 % and is predicted to include 3,829 genes of which 3,613 are protein coding, 147 are pseudogenes, 15 are rRNA coding, and 51 are tRNA coding. In addition, we provide insight into the redundancy of the genes using comparative genomics and suggest that PAMC25564 has glycogen and trehalose metabolism pathways (biosynthesis and degradation) associated with carbohydrate active enzyme (CAZymes). We also explain how the PAMC26654 produces energy in an extreme environment, wherein it utilizes polysaccharide or carbohydrate degradation as a source of energy. The genetic pattern analysis of CAZymes in cold-adapted bacteria can help to determine how they adapt and survive in such environments. Conclusions We have characterized the complete Arthrobacter sp. PAMC25564 genome and used comparative analysis to provide insight into the redundancy of its CAZymes for potential cold adaptation. This provides a foundation to understanding how the Arthrobacter strain produces energy in an extreme environment, which is by way of CAZymes, consistent with reports on the use of these specialized enzymes in cold environments. Knowledge of glycogen metabolism and cold adaptation mechanisms in Arthrobacter species may promote in-depth research and subsequent application in low-temperature biotechnology.


2021 ◽  
Vol 13 (3) ◽  
Author(s):  
Xiuqin Zhong ◽  
Max Lundberg ◽  
Lars Råberg

Abstract Differences in immune function between species could be a result of interspecific divergence in coding sequence and/or expression of immune genes. Here, we investigate how the degree of divergence in coding sequence and expression differs between functional categories of immune genes, and if differences between categories occur independently of other factors (expression level, pleiotropy). To this end, we compared spleen transcriptomes of wild-caught yellow-necked mice and bank voles. Immune genes expressed in the spleen were divided into four categories depending on the function of the encoded protein: pattern recognition receptors (PRR); signal transduction proteins; transcription factors; and cyto- and chemokines and their receptors. Genes encoding PRR and cyto-/chemokines had higher sequence divergence than genes encoding signal transduction proteins and transcription factors, even when controlling for potentially confounding factors. Genes encoding PRR also had higher expression divergence than genes encoding signal transduction proteins and transcription factors. There was a positive correlation between expression divergence and coding sequence divergence, in particular for PRR genes. We propose that this is a result of that divergence in PRR coding sequence leads to divergence in PRR expression through positive feedback of PRR ligand binding on PRR expression. When controlling for sequence divergence, expression divergence of PRR genes did not differ from other categories. Taken together, the results indicate that coding sequence divergence of PRR genes is a major cause of differences in immune function between species.


2018 ◽  
Vol 7 (14) ◽  
Author(s):  
Min-Jung Kim ◽  
Hye Sun Kim ◽  
Sam Churl Kim ◽  
Youn-Sig Kwak

Lactobacillus brevis strain 100D8 was isolated from rye silage and showed rapid acidification ability in vitro and antifungal activity against mycotoxin-producing fungi. We report here the complete genome sequence of L. brevis strain 100D8, which has a circular chromosome (2,351,988 bp, 2,304 coding sequences [CDSs]) and three plasmids (45,061 bp, 57 CDSs; 40,740 bp, 40 CDSs; and 39,943 bp, 57 CDSs).


Sign in / Sign up

Export Citation Format

Share Document