functional categories
Recently Published Documents


TOTAL DOCUMENTS

513
(FIVE YEARS 152)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Tiago da Silva Ribeiro ◽  
José A Galván ◽  
John E Pool

Local adaptation can lead to elevated genetic differentiation at the targeted genetic variant and nearby sites. Selective sweeps come in different forms, and depending on the initial and final frequencies of a favored variant, very different patterns of genetic variation may be produced. If local selection favors an existing variant that had already recombined onto multiple genetic backgrounds, then the width of elevated genetic differentiation (high FST) may be too narrow to detect using a typical windowed genome scan, even if the targeted variant becomes highly differentiated. We therefore used a simulation approach to investigate the power of SNP-level FST (specifically, the maximum SNP FST value within a window) to detect diverse scenarios of local adaptation, and compared it against whole-window FST and the Comparative Haplotype Identity statistic. We found that SNP FST had superior power to detect complete or mostly complete soft sweeps, but lesser power than window-wide statistics to detect partial hard sweeps. To investigate the relative enrichment and nature of SNP FST outliers from real data, we applied the two FST statistics to a panel of Drosophila melanogaster populations. We found that SNP FST had a genome-wide enrichment of outliers compared to demographic expectations, and though it yielded a lesser enrichment than window FST, it detected mostly unique outlier genes and functional categories. Our results suggest that SNP FST is highly complementary to typical window-based approaches for detecting local adaptation, and merits inclusion in future genome scans and methodologies.


Author(s):  
I. V. Ukolova ◽  
I. G. Kondratov ◽  
M. A. Kondakova ◽  
I. V. Lyubushkina ◽  
O. I. Grabelnykh ◽  
...  

Studies into mitochondrial сomplexomes in various organisms provide an insight into the native organization of proteins and metabolic pathways in the organelles of the subject under study. “Complexome” is a relatively recent concept describing the proteome of protein complexes, supercomplexes, and oligomeric proteins. Complexome analysis is performed using current electrophoretic and mass spectrometric techniques, in particular, by two-dimensional electrophoresis (2D BN/SDS-PAGE) in combination with mass spectrometry (MS). Unlike 2D IEF/SDS-PAGE, this method enables analysis of not only hydrophilic proteins of the mitochondrial matrix, but also membrane proteins and their associations, thus expanding the possibilities of studying the organelle proteome. In the present work, the complexome of etiolated pea shoots was studied for the first time using 2D BN/SDS-PAGE followed by MALDI-TOF MS. To this end, 145 protein spots excised from the gel were analyzed; 110 polypeptides were identified and assigned to different functional groups. A densitometric analysis revealed that the major protein group comprised the enzymes of the mitochondrial energy system (1), accounting for an average of 43% of the total polypeptide content. The remaining 57% was primarily distributed among the following functional categories: pyruvate dehydrogenase complex and citric acid cycle (2); amino acid metabolism (3); nucleic acid processing (4); protein folding (5); antioxidant protection (6); carrier proteins (7); other proteins (8); proteins having unknown functions (9). The obtained data indicate the complex organization of the pea proteome. In addition to the enzymes of the OXPHOS system, the proteins of other functional categories are found to form supramolecular structures. It is suggested that the presence of proteins from other cellular compartments may indicate the interaction of mitochondria with the enzymes or structures of corresponding organelles. In general, the obtained data on the pea complexome represent a kind of a mitochondrial “passport” that reflects the native state of the proteome of organelles corresponding to their physiological status.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Malvika Sudhakar ◽  
Raghunathan Rengaswamy ◽  
Karthik Raman

AbstractAn emergent area of cancer genomics is the identification of driver genes. Driver genes confer a selective growth advantage to the cell. While several driver genes have been discovered, many remain undiscovered, especially those mutated at a low frequency across samples. This study defines new features and builds a pan-cancer model, cTaG, to identify new driver genes. The features capture the functional impact of the mutations as well as their recurrence across samples, which helps build a model unbiased to genes with low frequency. The model classifies genes into the functional categories of driver genes, tumour suppressor genes (TSGs) and oncogenes (OGs), having distinct mutation type profiles. We overcome overfitting and show that certain mutation types, such as nonsense mutations, are more important for classification. Further, cTaG was employed to identify tissue-specific driver genes. Some known cancer driver genes predicted by cTaG as TSGs with high probability are ARID1A, TP53, and RB1. In addition to these known genes, potential driver genes predicted are CD36, ZNF750 and ARHGAP35 as TSGs and TAB3 as an oncogene. Overall, our approach surmounts the issue of low recall and bias towards genes with high mutation rates and predicts potential new driver genes for further experimental screening. cTaG is available at https://github.com/RamanLab/cTaG.


2021 ◽  
Vol 6 (2) ◽  
pp. 243-253
Author(s):  
Jajang Muhariyansah ◽  
Atik Rahmawati ◽  
Anita Fibonacci

Scientific literacy is an ability that must be had by pre-service teachers. This research aimed to find out the scientific literacy's ability of pre-service teachers in chemistry education. This research was descriptive with quantitative approach. Participants were taken by simple random sampling techniques, the participants are chemistry education students. The data source comes from scientific literacy tests with socio-scientific issues and open-ended question description tests. The validity of the data was tested using a data triangulation technique, in which researchers compare data obtained through test instruments and interview results. The results of the data analysis showed the scientific literacy of chemistry education students was dominant in the nominal and functional categories with a percentage of 33.2% and 24.2%, conceptual and multidimensional categories 13.7%; 4.4%; and 24.5% of students did not give answers the tests.


Author(s):  
Qonitah Nuri Humaira ◽  
Emy Sudarwati

This study focuses on the analysis of functional delayed echolalia towards an autistic individual in   Life, Animated documentary. The obtained data were derived from Owen Suskind's utterances and words in the aforementioned documentary, which the researchers manipulated and structured to fall into two categories of functional delayed echolalia. The study used qualitative descriptive method in analyzing the functional delayed echolalia of Owen Suskind using interactive and non-interactive functional categories of delayed echolalia theory proposed by Vicker (1999). The findings show that there are 8 (eight) out of 9 (nine) types of interactive delayed echolalia were discovered namely   Turn taking, Verbal, Completion,   Providing information, Labelling,   Protest,   Request,   Calling and Affirmation. Meanwhile, the non- interactive   delayed echolalia consists of three types namely   non-focused,   situation association, and   rehearsal.   The findings of this study are expected to give   a positive impact on both readers who are dealing with children with autism who have echolalia. It will provide information on their language development in order to later determine the ideal method to handle them with care.


2021 ◽  
Vol 8 ◽  
Author(s):  
Amanda J. Gibson ◽  
Ian J. Passmore ◽  
Valwynne Faulkner ◽  
Dong Xia ◽  
Irene Nobeli ◽  
...  

Members of the Mycobacterium tuberculosis complex (MTBC) show distinct host adaptations, preferences and phenotypes despite being >99% identical at the nucleic acid level. Previous studies have explored gene expression changes between the members, however few studies have probed differences in gene essentiality. To better understand the functional impacts of the nucleic acid differences between Mycobacterium bovis and Mycobacterium tuberculosis, we used the Mycomar T7 phagemid delivery system to generate whole genome transposon libraries in laboratory strains of both species and compared the essentiality status of genes during growth under identical in vitro conditions. Libraries contained insertions in 54% of possible TA sites in M. bovis and 40% of those present in M. tuberculosis, achieving similar saturation levels to those previously reported for the MTBC. The distributions of essentiality across the functional categories were similar in both species. 527 genes were found to be essential in M. bovis whereas 477 genes were essential in M. tuberculosis and 370 essential genes were common in both species. CRISPRi was successfully utilised in both species to determine the impacts of silencing genes including wag31, a gene involved in peptidoglycan synthesis and Rv2182c/Mb2204c, a gene involved in glycerophospholipid metabolism. We observed species specific differences in the response to gene silencing, with the inhibition of expression of Mb2204c in M. bovis showing significantly less growth impact than silencing its orthologue (Rv2182c) in M. tuberculosis. Given that glycerophospholipid metabolism is a validated pathway for antimicrobials, our observations suggest that target vulnerability in the animal adapted lineages cannot be assumed to be the same as the human counterpart. This is of relevance for zoonotic tuberculosis as it implies that the development of antimicrobials targeting the human adapted lineage might not necessarily be effective against the animal adapted lineage. The generation of a transposon library and the first reported utilisation of CRISPRi in M. bovis will enable the use of these tools to further probe the genetic basis of survival under disease relevant conditions.


2021 ◽  
Vol 1 ◽  
Author(s):  
Xi Zhang ◽  
Yining Hu ◽  
David Roy Smith

Gene duplication is an important evolutionary mechanism capable of providing new genetic material for adaptive and nonadaptive evolution. However, bioinformatics tools for identifying duplicate genes are often limited to the detection of paralogs in multiple species or to specific types of gene duplicates, such as retrocopies. Here, we present a user-friendly, BLAST-based web tool, called HSDFinder, which can identify, annotate, categorize, and visualize highly similar duplicate genes (HSDs) in eukaryotic nuclear genomes. HSDFinder includes an online heatmap plotting option, allowing users to compare HSDs among different species and visualize the results in different Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional categories. The external software requirements are BLAST, InterProScan, and KEGG. The utility of HSDFinder was tested on various model eukaryotic species, including Chlamydomonas reinhardtii, Arabidopsis thaliana, Oryza sativa, and Zea mays as well as the psychrophilic green alga Chlamydomonas sp. UWO241, and was proven to be a practical and accurate tool for gene duplication analyses. The web tool is free to use at http://hsdfinder.com. Documentation and tutorials can be found via the GitHub: https://github.com/zx0223winner/HSDFinder.


2021 ◽  
Author(s):  
Geoffroy Dubourg-Felonneau ◽  
Shahab Shams ◽  
Eyal Akiva ◽  
Lawrence Lee

We present a method to provide a biologically meaningful representation of the space of protein sequences. While billions of protein sequences are available, organizing this vast amount of information into functional categories is daunting, time-consuming and incomplete. We present our unsupervised approach that combines Transformer protein language models, UMAP graphs, and spectral clustering to create meaningful clusters in the protein spaces. To demonstrate the meaningfulness of the clusters, we show that they preserve most of the signal present in a dataset of manually curated enzyme protein families.


2021 ◽  
Vol 15 ◽  
Author(s):  
Henry B. C. Taylor ◽  
Alexander F. Jeans

Homeostatic synaptic plasticity (HSP) regulates synaptic strength both pre- and postsynaptically to ensure stability and efficient information transfer in neural networks. A number of neurological diseases have been associated with deficits in HSP, particularly diseases characterised by episodic network instability such as migraine and epilepsy. Recently, it has become apparent that HSP also plays a role in many neurodegenerative diseases. In this mini review, we present an overview of the evidence linking HSP to each of the major neurodegenerative diseases, finding that HSP changes in each disease appear to belong to one of three broad functional categories: (1) deficits in HSP at degenerating synapses that contribute to pathogenesis or progression; (2) HSP induced in a heterosynaptic or cell non-autonomous manner to support the function of networks of which the degenerating synapses or cells are part; and (3) induction of HSP within the degenerating population of synapses to preserve function and to resist the impact of synapse loss. Understanding the varied manifestations of HSP in neurodegeneration will not only aid understanding mechanisms of disease but could also inspire much-needed novel approaches to therapy.


2021 ◽  
Author(s):  
Junliang Wang ◽  
Wei Chen ◽  
Wenhong Hou ◽  
Ni Hong ◽  
Hanbing Zhong ◽  
...  

AbstractAlternative polyadenylation (APA) plays an important role in post-transcriptional gene regulation such as transcript stability and translation efficiency. However, our knowledge about APA dynamics at single cell level is largely unexplored. Here we developed single cell polyadenylation sequencing (scPolyA-seq), a strand-specific approach for sequencing 3’ end of transcripts, to investigate the landscape of APA at single cell level. By analyzing several cell lines, we found many genes using multiple polyA sites in bulk data are prone to use only one polyA site in each single cell. Interestingly, cell cycle was significantly enriched in genes showing high variation of polyA site usages. We further identified 414 genes showing polyA site usage switch after cell synchronization. Genes showing cell cycle associated polyA site usage switch were grouped into 6 clusters, with cell phase specific functional categories enriched in each cluster. Furthermore, scPolyA-seq could facilitate study of APA in various biological processes.


Sign in / Sign up

Export Citation Format

Share Document