scholarly journals The CTCF Insulator Protein Is Posttranslationally Modified by SUMO

2008 ◽  
Vol 29 (3) ◽  
pp. 714-725 ◽  
Author(s):  
Melissa J. MacPherson ◽  
Linda G. Beatty ◽  
Wenjing Zhou ◽  
Minjie Du ◽  
Paul D. Sadowski

ABSTRACT The CTCF protein is a highly conserved zinc finger protein that is implicated in many aspects of gene regulation and nuclear organization. Its functions include the ability to act as a repressor of genes, including the c-myc oncogene. In this paper, we show that the CTCF protein can be posttranslationally modified by the small ubiquitin-like protein SUMO. CTCF is SUMOylated both in vivo and in vitro, and we identify two major sites of SUMOylation in the protein. The posttranslational modification of CTCF by the SUMO proteins does not affect its ability to bind to DNA in vitro. SUMOylation of CTCF contributes to the repressive function of CTCF on the c-myc P2 promoter. We also found that CTCF and the repressive Polycomb protein, Pc2, are colocalized to nuclear Polycomb bodies. The Pc2 protein may act as a SUMO E3 ligase for CTCF, strongly enhancing its modification by SUMO 2 and 3. These studies expand the repertoire of posttranslational modifications of CTCF and suggest roles for such modifications in its regulation of epigenetic states.

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Fengwei Li ◽  
Qinjunjie Chen ◽  
Hui Xue ◽  
Lei Zhang ◽  
Kui Wang ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) have extremely complex roles in the progression of intrahepatic cholangiocarcinoma (ICC) and remain to be elucidated. By cytological and animal model experiments, this study demonstrated that the expression of lncRNA MNX1-AS1 was remarkably elevated in ICC cell lines and tissues, and was highly and positively correlated with motor neuron and pancreas homeobox protein 1 (MNX1) expression. MNX1-AS1 significantly facilitated the proliferation, migration, invasion, and angiogenesis in ICC cells in vitro, and remarkably promoted tumor growth and metastasis in vivo. Further study revealed that MNX1-AS1 promoted the expression of MNX1 via recruiting transcription factors c-Myc and myc-associated zinc finger protein (MAZ). Furthermore, MNX1 upregulated the expression of Ajuba protein via binding to its promoter region, and subsequently, Ajuba protein suppressed the Hippo signaling pathway. Taken together, our results uncovered that MNX1-AS1 can facilitate ICC progression via MNX1-AS1/c-Myc and MAZ/MNX1/Ajuba/Hippo pathway, suggesting that MNX1-AS1 may be able to serve as a potential target for ICC treatment.


2020 ◽  
Vol 41 (1) ◽  
pp. e00106-20
Author(s):  
Dibyanti Mukherjee ◽  
Vivek Chander ◽  
Arun Bandyopadhyay

ABSTRACTMitochondrial dysfunction is one of the major pathological attributes of cardiac hypertrophy and is associated with reduced expression of PGC1α in cardiomyocytes. However, the transcriptional regulation of PGC1α remains elusive. Here, we show that parkin interacting substrate (PARIS), a KRAB zinc finger protein, prevented PGC1α transcription despite the induction of cardiomyocytes with hypertrophic stimuli. Moreover, PARIS expression and its nuclear localization are enhanced in hypertrophy both in vitro and in vivo. Knocking down PARIS resulted in mitochondrial biogenesis and improved respiration and other biochemical features that were compromised during hypertrophy. Furthermore, a PARIS-dependent proteome showed exclusive binding of a deSUMOylating protein called DJ-1 to PARIS in control cells, while this interaction is completely abrogated in hypertrophied cells. We further demonstrate that proteasomal degradation of DJ-1 under oxidative stress led to augmented PARIS SUMOylation and consequent repression of PGC1α promoter activity. SUMOylation-resistant mutants of PARIS failed to repress PGC1α, suggesting a critical role for PARIS SUMOylation in hypertrophy. The present study, therefore, proposes a novel regulatory pathway where DJ-1 acts as an oxidative stress sensor and contributes to the feedback loop governing PARIS-mediated mitochondrial function.


2007 ◽  
Vol 403 (1) ◽  
pp. 177-182 ◽  
Author(s):  
Jong Seok Kang

Rapid progress in the ability to develop and utilize zinc-finger proteins with customized sequence specificity have led to their increasing use as tools for modulation of target gene transcription in the post-genomic era. In the present paper, a series of in vitro binding assays and in vivo reporter analyses were used to demonstrate that a zinc-finger protein can effectively specify a base at each position of the target site in vivo and that functional activity of the zinc-finger protein as either a transcriptional repressor or activator is positively correlated with its binding affinity. In addition, this correlation can be extended to artificial engineered zinc-finger proteins. These data suggest that the binding affinity of designer zinc-finger proteins with novel specificity might be a determinant for their ability to regulate transcription of a gene of interest.


2017 ◽  
Vol 44 (3) ◽  
pp. 920-934 ◽  
Author(s):  
Hao Wang ◽  
Xubin Deng ◽  
Jinshan Zhang ◽  
Zhilin Ou ◽  
Jiajie Mai ◽  
...  

Background/Aims: Zinc finger protein 703 (ZNF703), initially identified as a novel oncogene in human breast cancer, is a member of the NET/NlZ family of zinc finger transcription factors. It is recognized that the overexpression of ZNF703 is associated with various types of human cancers, but the role and molecular mechanism of ZNF703 in oral squamous cell carcinoma (OSCC) are unknown. Methods: ZNF703 expression levels were examined in OSCC tissues and non-cancerous tissues by qRT-PCR and immunohistochemistry (IHC). The molecular mechanisms of ZNF703 and its effects on cell growth and metastasis were explored in vitro and in vivo using the CCK8 assay, colony formation assay, cell cycle analysis, migration and invasion assays, wound-healing assay, western blotting and xenograft experiments in nude mice. Results: In this study, ZNF703 was found to be upregulated in OSCC tissues compared to that in normal tissues at both mRNA and protein levels, and its expression level was closely correlated with the overall survival of patients with OSCC. Silencing of the ZNF703 gene in OSCC cells significantly inhibited cell growth and metastasis in vitro and in vivo. Conversely, the overexpression of ZNF703 in OSCC cells promoted cancer growth and metastasis in vitro. Mechanistically, ZNF703 activated the PI3K/AKT/GSK-3β signalling pathway and its downstream effectors, thus regulating the cell cycle and epithelial-mesenchymal transition (EMT). Furthermore, the promotive effects of ZNF703 on cellular proliferation and metastasis could be rescued by LY294002 (a PI3K-specific inhibitor) and MK2206 (an Akt-specific inhibitor). Conclusion: The results show that ZNF703 promotes cell growth and metastasis through PI3K/Akt/GSK-3β signalling in OSCC and that it may be a promising target in the treatment of patients with OSCC.


2002 ◽  
Vol 80 (3) ◽  
pp. 321-333 ◽  
Author(s):  
Fyodor D Urnov

Transcription factors and chromatin collaborate in bringing the eukaryotic genome to life. An important, and poorly understood, aspect of this collaboration involves targeting the regulators to correct binding sites in vivo. An implicit and insufficiently tested assumption in the field has been that chromatin simply obstructs most sites and leaves only a few functionally relevant ones accessible. The major class of transcription factors in all metazoa, zinc finger proteins (ZFPs), can bind to chromatin in vitro (as clearly shown for Sp1, GATA-1 and -4, and the nuclear hormone receptors, for example). Data on the accessibility of DNA within heterochromatin to nonhistone regulators (E.A. Sekinger and D.S. Gross. 2001. Mol. Cell 105: 403–414; C. Jolly et al. 2002. J. Cell. Biol. 156: 775–781) and the ability of the basal transcription machinery to reside within highly condensed chromatin (most recently, R. Christova and T. Oelgeschlaeger. 2002. Nat. Cell Biol. 4: 79–82) further weaken the argument that chromatin acts as an across-the-board deterrent to ZFP binding. These proteins, however, do not bind promiscuously in vivo, and recent data on human cells (C.E. Horak et al. 2002. Proc. Natl. Acad. Sci. U.S.A. 99: 2924–2929) confirm earlier data on budding yeast (B. Ren et al. 2000. Science (Washington, D.C.), 290: 2306–2309) that primary DNA sequence, i.e., density of binding sites per unit DNA length, is not the primary determinant of where a ZFP transcription factor will bind in vivo. This article reviews these data and uses ZFP transcription factors as a model system to compare in vitro binding to chromatin by transcription factors with their in vivo behavior in gene regulation. DNA binding domain structure, nonrandom nucleoprotein organization of chromatin at target promoters, and cooperativity of regulator action may all contribute to target site selection in vivo.Key words: zinc finger protein, chromatin, transcriptional control, nucleosome.


2021 ◽  
Vol 21 (6) ◽  
pp. 451-461
Author(s):  
Wei Gu ◽  
Yutong Cheng ◽  
Su Wang ◽  
Tao Sun ◽  
Zhizhong Li

AbstractEpigenetic regulations essentially participate in the development of cardiomyocyte hypertrophy. PHD finger protein 19 (PHF19) is a polycomb protein that controls H3K36me3 and H3K27me3. However, the roles of PHF19 in cardiac hypertrophy remain unknown. Here in this work, we observed that PHF19 promoted cardiac hypertrophy via epigenetically targeting SIRT2. In angiotensin II (Ang II)-induced cardiomyocyte hypertrophy, adenovirus-mediated knockdown of Phf19 reduced the increase in cardiomyocyte size, repressed the expression of hypertrophic marker genes Anp and Bnp, as well as inhibited protein synthesis. By contrast, Phf19 overexpression promoted Ang II-induced cardiomyocyte hypertrophy in vitro. We also knocked down Phf19 expression in mouse hearts in vivo. The results demonstrated that Phf19 knockdown reduced Ang II-induced decline in cardiac fraction shortening and ejection fraction. Phf19 knockdown also inhibited Ang II-mediated increase in heart weight, reduced cardiomyocyte size, and repressed the expression of hypertrophic marker genes in mouse hearts. Further mechanism studies showed that PHF19 suppressed the expression of SIRT2, which contributed to the function of PHF19 during cardiomyocyte hypertrophy. PHF19 bound the promoter of SIRT2 and regulated the balance between H3K27me3 and H3K36me3 to repress the expression of SIRT2 in vitro and in vivo. In human hypertrophic hearts, the overexpression of PHF19 and downregulation of SIRT2 were observed. Of importance, PHF19 expression was positively correlated with hypertrophic marker genes ANP and BNP but negatively correlated with SIRT2 in human hypertrophic hearts. Therefore, our findings demonstrated that PHF19 promoted the development of cardiac hypertrophy via epigenetically regulating SIRT2.


Author(s):  
J. Metuzals

It has been demonstrated that the neurofibrillary tangles in biopsies of Alzheimer patients, composed of typical paired helical filaments (PHF), consist also of typical neurofilaments (NF) and 15nm wide filaments. Close structural relationships, and even continuity between NF and PHF, have been observed. In this paper, such relationships are investigated from the standpoint that the PHF are formed through posttranslational modifications of NF. To investigate the validity of the posttranslational modification hypothesis of PHF formation, we have identified in thin sections from frontal lobe biopsies of Alzheimer patients all existing conformations of NF and PHF and ordered these conformations in a hypothetical sequence. However, only experiments with animal model preparations will prove or disprove the validity of the interpretations of static structural observations made on patients. For this purpose, the results of in vitro experiments with the squid giant axon preparations are compared with those obtained from human patients. This approach is essential in discovering etiological factors of Alzheimer's disease and its early diagnosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Gao ◽  
Xianwei Ma ◽  
Ming Yuan ◽  
Yulan Yi ◽  
Guoke Liu ◽  
...  

AbstractUbiquitination is one of the most prevalent protein posttranslational modifications. Here, we show that E3 ligase Nedd4l positively regulates antiviral immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Deficiency of Nedd4l significantly impairs type I interferon and proinflammatory cytokine production induced by virus infection both in vitro and in vivo. Nedd4l deficiency inhibits virus-induced ubiquitination of TRAF3, the binding between TRAF3 and TBK1, and subsequent phosphorylation of TBK1 and IRF3. Nedd4l directly interacts with TRAF3 and catalyzes K29-linked ubiquitination of Cys56 and Cys124, two cysteines that constitute zinc fingers, resulting in enhanced association between TRAF3 and E3 ligases, cIAP1/2 and HECTD3, and also increased K48/K63-linked ubiquitination of TRAF3. Mutation of Cys56 and Cys124 diminishes Nedd4l-catalyzed K29-linked ubiquitination, but enhances association between TRAF3 and the E3 ligases, supporting Nedd4l promotes type I interferon production in response to virus by catalyzing ubiquitination of the cysteines in TRAF3.


Sign in / Sign up

Export Citation Format

Share Document