phd finger
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 73)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Dulce Rosario Alberto-Aguilar ◽  
Verónica Ivonne Hernández-Ramírez ◽  
Juan Carlos Osorio-Trujillo ◽  
Dolores Gallardo-Rincón ◽  
Alfredo Toledo-Leyva ◽  
...  

Abstract Background Ovarian cancer is the most aggressive gynecological malignancy. Transcriptional regulators impact the tumor phenotype and, consequently, clinical progression and response to therapy. PHD finger protein 20-like protein 1 (PHF20L1) is a transcriptional regulator with several isoforms, and studies on its role in ovarian cancer are limited. We previously reported that PHF20L1 is expressed as a fucosylated protein in SKOV-3 cells stimulated with ascites from patients with ovarian cancer. Methods We decided to analyze the expression of PHF20L1 in ovarian cancer tissues, determine whether a correlation exists between PHF20L1 expression and patient clinical data, and analyze whether ascites can modulate the different isoforms of this protein. Ovarian cancer biopsies from 29 different patients were analyzed by immunohistochemistry, and the expression of the isoforms in ovarian cancer cells with or without exposure to the tumor microenvironment, i.e., the ascitic fluid, was determined by western blotting assays. Results Immunohistochemical results suggest that PHF20L1 exhibits increased expression in sections of tumor tissues from patients with ovarian cancer and that higher PHF20L1 expression correlates with shorter progression-free survival and shorter overall survival. Furthermore, western blotting assays determined that protein isoforms are differentially regulated in SKOV-3 cells in response to stimulation with ascites from patients with epithelial ovarian cancer. Conclusion The results suggest that PHF20L1 could play a relevant role in ovarian cancer given that higher PHF20L1 protein expression is associated with lower overall patient survival.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zheng-yi Zhu ◽  
Ning Tang ◽  
Ming-fu Wang ◽  
Jing-chao Zhou ◽  
Jing-lin Wang ◽  
...  

BackgroundAs a crucial constituent part of Polycomb repressive complex 2, PHD finger protein 19 (PHF19) plays a pivotal role in epigenetic regulation, and acts as a critical regulator of multiple pathophysiological processes. However, the exact roles of PHF19 in cancers remain enigmatic. The present research was primarily designed to provide the prognostic landscape visualizations of PHF19 in cancers, and study the correlations between PHF19 expression and immune infiltration characteristics in tumor microenvironment.MethodsRaw data in regard to PHF19 expression were extracted from TCGA and GEO data portals. We examined the expression patterns, prognostic values, mutation landscapes, and protein-protein interaction network of PHF19 in pan-cancer utilizing multiple databases, and investigated the relationship of PHF19 expression with immune infiltrates across TCGA-sequenced cancers. The R language was used to conduct KEGG and GO enrichment analyses. Besides, we built a risk-score model of hepatocellular carcinoma (HCC) and validated its prognostic classification efficiency.ResultsOn balance, PHF19 expression was significantly higher in cancers in comparison with that in noncancerous samples. Increased expression of PHF19 was detrimental to the clinical prognoses of cancer patients, especially HCC. There were significant correlations between PHF19 expression and TMB or MSI in several cancers. High PHF19 levels were critically associated with the infiltration of myeloid-derived suppressor cells (MDSCs) and Th2 subsets of CD4+ T cells in most cancers. Enrichment analyses revealed that PHF19 participated in regulating carcinogenic processes including cell cycle and DNA replication, and was correlated with the progression of HCC. Intriguingly, GSEA suggested that PHF19 was correlated with the cellular components including immunoglobulin complex and T cell receptor complex in HCC. Based on PHF19-associated functional gene sets, an eleven-gene prognostic signature was constructed to predict HCC prognosis. Finally, we validated pan-cancer PHF19 expression, and its impacts on immune infiltrates in HCC.ConclusionThe epigenetic related regulator PHF19 participates in the carcinogenic progression of multiple cancers, and may contribute to the immune infiltration in tumor microenvironment. Our study suggests that PHF19 can serve as a carcinogenic indicator related to prognosis in pan-cancer, especially HCC, and shed new light on therapeutics of cancers for clinicians.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fumou Sun ◽  
Yan Cheng ◽  
Jesse D. Riordan ◽  
Adam Dupuy ◽  
Wendy Dubois ◽  
...  

AbstractUnbiased genetic forward screening using retroviral insertional mutagenesis in a genetically engineered mouse model of human multiple myeloma may further our understanding of the genetic pathways that govern neoplastic plasma cell development. To evaluate this hypothesis, we performed a tumor induction study in MYC-transgenic mice infected as neonates with the Moloney-derived murine leukemia virus, MOL4070LTR. Next-generation DNA sequencing of proviral genomic integration sites yielded rank-ordered candidate tumor progression genes that accelerated plasma cell neoplasia in mice. Rigorous clinical and biological validation of these genes led to the discovery of two novel myeloma genes: WDR26 (WD repeat-containing protein 26) and MTF2 (metal response element binding transcription factor 2). WDR26, a core component of the carboxy-terminal to LisH (CTLH) complex, is overexpressed or mutated in solid cancers. MTF2, an ancillary subunit of the polycomb repressive complex 2 (PRC2), is a close functional relative of PHD finger protein 19 (PHF19) which is currently emerging as an important driver of myeloma. These findings underline the utility of genetic forward screens in mice for uncovering novel blood cancer genes and suggest that WDR26-CTLH and MTF2-PRC2 are promising molecular targets for new approaches to myeloma treatment and prevention.


Author(s):  
Hussein Ghamlouch ◽  
Eileen M. Boyle ◽  
Patrick Blaney ◽  
Yubao Wang ◽  
Jinyoung Choi ◽  
...  

AbstractDespite  improvements in outcome, 15-25% of newly diagnosed multiple myeloma (MM) patients have treatment resistant high-risk (HR) disease with a poor survival. The lack of a genetic basis for HR has focused attention on the role played by epigenetic changes. Aberrant expression and somatic mutations affecting genes involved in the regulation of tri-methylation of the lysine (K) 27 on histone 3 H3 (H3K27me3) are common in cancer. H3K27me3 is catalyzed by EZH2, the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2). The deregulation of H3K27me3 has been shown to be involved in oncogenic transformation and tumor progression in a variety of hematological malignancies including MM. Recently we have shown that aberrant overexpression of the PRC2 subunit PHD Finger Protein 19 (PHF19) is the most significant overall contributor to HR status further focusing attention on the role played by epigenetic change in MM. By modulating both the PRC2/EZH2 catalytic activity and recruitment, PHF19 regulates the expression of key genes involved in cell growth and differentiation. Here we review the expression, regulation and function of PHF19 both in normal and the pathological contexts of solid cancers and MM. We present evidence that strongly implicates PHF19 in the regulation of genes important in cell cycle and the genetic stability of MM cells making it highly relevant to HR MM behavior. A detailed understanding of the normal and pathological functions of PHF19 will allow us to design therapeutic strategies able to target aggressive subsets of MM.


2021 ◽  
Author(s):  
Julius Tieroyaare Dongdem ◽  
Cletus Adiyaga Wezena

E3 ubiquitin ligases of which there are >600 putative in humans, constitute a family of highly heterogeneous proteins and protein complexes that are the ultimate enzymes responsible for the recruitment of an ubiquitin loaded E2 ubiquitin-conjugating enzyme, recognise the appropriate protein substrate and directly or indirectly transfer the ubiquitin load onto the substrate. The aftermath of an E3 ligase activity is usually the formation of an isopeptide bond between the free carboxylate group of ubiquitin’s C-terminal Gly76 and an ε-amino group of the substrate’s Lys, even though non-canonical ubiquitylation on non-amine groups of target proteins have been observed. E3 ligases are grouped into four distinct families: HECT, RING-finger/U-box, RBR and PHD-finger. E3 ubiquitin ligases play critical roles in subcellular signalling cascades in eukaryotes. Dysfunctional E3 ubiquitin ligases therefore tend to inflict dramatic effects on human health and may result in the development of various diseases including Parkinson’s, Amyotrophic Lateral Sclerosis, Alzheimer’s, cancer, etc. Being regulators of numerous cellular processes, some E3 ubiquitin ligases have become potential targets for therapy. This chapter will present a comprehensive review of up-to-date findings in E3 ligases, their role in the pathology of disease and therapeutic potential for future drug development.


2021 ◽  
Author(s):  
Ji Yoon Guk ◽  
Min Jeong Jang ◽  
Seungill Kim

Abstract BackgroundThe plant homeodomain (PHD)-finger gene family that belongs to zinc-finger genes, plays important roles in epigenetics by regulating gene expression in eukaryotes. However, inaccurate annotation of PHD-finger genes hinders further downstream comparative, evolutionary, and functional studies.ResultsWe performed genome-wide re-annotation in Arabidopsis, rice, pepper, potato, and tomato to better understand the role of PHD-finger genes in these species. Our investigation identified 875 PHD-finger genes, of which 225 (26% of total) were newly identified, including 57 (54%) novel PHD-finger genes in pepper. The PHD-finger genes of the five plant species have various integrated domains that may be responsible for the diversification of structures and functions of these genes. Evolutionary analyses suggest that PHD-finger genes were expanded recently by lineage-specific duplication, especially in pepper and potato, resulting in diverse repertoires of PHD-finger genes among the species. We validated the expression of six newly identified PHD-finger genes in pepper with qRT-PCR. Transcriptome analyses suggest potential functions of PHD-finger genes in response to various abiotic stresses in pepper.ConclusionsOur data, including the updated annotation of PHD-finger genes, provide useful information for further evolutionary and functional analyses to better understand the roles of the PHD-finger gene family in pepper.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lisa-Marie Appel ◽  
Vedran Franke ◽  
Melania Bruno ◽  
Irina Grishkovskaya ◽  
Aiste Kasiliauskaite ◽  
...  

AbstractThe C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.


2021 ◽  
Vol 22 (20) ◽  
pp. 11134
Author(s):  
Anton O. Chugunov ◽  
Nadezhda A. Potapova ◽  
Natalia S. Klimenko ◽  
Victor V. Tatarskiy ◽  
Sofia G. Georgieva ◽  
...  

Transcription activation factors and multisubunit coactivator complexes get recruited at specific chromatin sites via protein domains that recognize histone modifications. Single PHDs (plant homeodomains) interact with differentially modified H3 histone tails. Double PHD finger (DPF) domains possess a unique structure different from PHD and are found in six proteins: histone acetyltransferases MOZ and MORF; chromatin remodeling complex BAF (DPF1–3); and chromatin remodeling complex PBAF (PHF10). Among them, PHF10 stands out due to the DPF sequence, structure, and functions. PHF10 is ubiquitously expressed in developing and adult organisms as four isoforms differing in structure (the presence or absence of DPF) and transcription regulation functions. Despite the importance of the DPF domain of PHF10 for transcription activation, its structure remains undetermined. We performed homology modeling of the human PHF10 DPF domain and determined common and distinct features in structure and histone modifications recognition capabilities, which can affect PBAF complex chromatin recruitment. We also traced the evolution of DPF1–3 and PHF10 genes from unicellular to vertebrate organisms. The data reviewed suggest that the DPF domain of PHF10 plays an important role in SWI/SNF-dependent chromatin remodeling during transcription activation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masoomeh Jannesar ◽  
Seyed Mahdi Seyedi ◽  
Christopher Botanga

AbstractWe developed novel miRNA-based markers based on salt responsive miRNA sequences to detect polymorphisms in miRNA sequences and locations. The validation of 76 combined miRNA + miRNA and miRNA + ISSR markers in the three extreme pistachio populations led to the identification of three selected markers that could link salt tolerance phenotype to genotype and divided pistachio genotypes and Pistacia species into three clusters. This novel functional marker system, in addition to more efficient performance, has higher polymorphisms than previous miRNA-based marker systems. The functional importance of the target gene of five miRNAs in the structure of the three selected markers in regulation of different genes such as ECA2, ALA10, PFK, PHT1;4, PTR3, KUP2, GRAS, TCP, bHLH, PHD finger, PLATZ and genes involved in developmental, signaling and biosynthetic processes shows that the polymorphism associated with these selected miRNAs can make a significant phenotypic difference between salt sensitive and tolerant pistachio genotypes. The sequencing results of selected bands showed the presence of conserved miRNAs in the structure of the mitochondrial genome. Further notable findings of this study are that the sequences of PCR products of two selected markers were annotated as Gypsy and Copia retrotransposable elements. The transposition of retrotransposons with related miRNAs by increasing the number of miRNA copies and changing their location between nuclear and organellar genomes can affect the regulatory activity of these molecules. These findings show the crucial role of retrotransposon-derived miRNAs as mobile epigenetic regulators between intracellular genomes in regulating salt stress responses as well as creating new and tolerant phenotypes for adaptation to environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document