Macro- and microstructural analysis of the Zhujiafang ductile shear zone, Hengshan Complex: Tectonic nature and geodynamic implications of the evolution of Trans−North China orogen

Author(s):  
Lingchao He ◽  
Jian Zhang ◽  
Guochun Zhao ◽  
Changqing Yin ◽  
Jiahui Qian ◽  
...  

In worldwide orogenic belts, crustal-scale ductile shear zones are important tectonic channels along which the orogenic root (i.e., high-grade metamorphic lower-crustal rocks) commonly experienced a relatively quick exhumation or uplift process. However, their tectonic nature and geodynamic processes are poorly constrained. In the Trans−North China orogen, the crustal-scale Zhujiafang ductile shear zone represents a major tectonic boundary separating the upper and lower crusts of the orogen. Its tectonic nature, structural features, and timing provide vital information into understanding this issue. Detailed field observations showed that the Zhujiafang ductile shear zone experienced polyphase deformation. Variable macro- and microscopic kinematic indicators are extensively preserved in the highly sheared tonalite-trondhjemite-granodiorite (TTG) and supracrustal rock assemblages and indicate an obvious dextral strike-slip and dip-slip sense of shear. Electron backscattered diffraction (EBSD) was utilized to further determine the crystallographic preferred orientation (CPO) of typical rock-forming minerals, including hornblende, quartz, and feldspar. EBSD results indicate that the hornblendes are characterized by (100) <001> and (110) <001> slip systems, whereas quartz grains are dominated by prism <a> and prism <c> slip systems, suggesting an approximate shear condition of 650−700 °C. This result is consistent with traditional thermobarometry pressure-temperature calculations implemented on the same mineral assemblages. Combined with previously reported metamorphic data in the Trans−North China orogen, we suggest that the Zhujiafang supracrustal rocks were initially buried down to ∼30 km depth, where high differential stress triggered the large-scale ductile shear between the upper and lower crusts. The high-grade lower-crustal rocks were consequently exhumed upwards along the shear zone, synchronous with extensive isothermal decompression metamorphism. The timing of peak collision-related crustal thickening was further constrained by the ca. 1930 Ma metamorphic zircon ages, whereas a subsequent exhumation event was manifested by ca. 1860 Ma syntectonic granitic veins and the available Ar-Ar ages of the region. The Zhujiafang ductile shear zone thus essentially record an integrated geodynamic process of initial collision, crustal thickening, and exhumation involved in formation of the Trans−North China orogen at 1.9−1.8 Ga.

2020 ◽  
Author(s):  
Jiahui Qian

<p>Ductile shear zones <span>usually record mineralogical and isotopic changes that are not apparent in the surrounding host rocks and thus may preserve a complete evolutionary record in a single locale from relatively undeformed to highly deformed rocks. </span>The Zhujiafang ductile shear zone is situated in the central Hengshan Complex, a key area for understanding the Paleoproterozoic tectonic evolution of the Trans-North China Orogen, North China Craton. Detailed metamorphic and geochronological analyses were carried out on metapelite and garnet amphibolite from the Zhujiafang ductile shear zone. The metapelite preserves two phases of mineral assemblages: early kyanite-rutile-bearing assemblage and late chlorite-staurolite-bearing assemblage in garnet–mica schist, and inclusion-type muscovite (high-Si) + kyanite assemblage and late sillimanite-bearing assemblage in sillimanite–mica gneiss. Garnet in the metapelite occasionally exhibits pronounced two-stage zoning characteristic of a diffusion core with irregular pyrope (X<sub>py</sub>) and grossular (X<sub>gr</sub>) contents and a growth rim with X<sub>py</sub> and X<sub>gr</sub> increasing outwards. The isopleths of the maximum X<sub>gr</sub> in garnet core and Si content in inclusion-type muscovite in the P–T pseudosections suggest that the early mineral assemblages underwent medium-high-pressure type metamorphism with pressures up to 12–14 kbar at 700–750 °C. The late assemblages and the growth zoning of garnet rim predict a late separated clockwise P–T path with peak conditions of 6.5 ± 0.2 kbar/620 ± 10 °C (medium-low-pressure type). The garnet amphibolite is mainly composed of garnet, hornblende, plagioclase, ilmenite and quartz, without overprinting of late mineral assemblages except for localized corona textures. Phase modeling suggests that the rock has experienced high-amphibolite facies metamorphism with peak conditions of 10.5 ± 0.8 kbar/770 ± 50 °C, which is broadly consistent with the early-phase metamorphism of metapelite. Zircon U–Pb dating on metapelite yields two metamorphic age groups of 1.96–1.92 Ga and 1.87–1.86 Ga which are interpreted to represent the timing of the two separated phases of metamorphism. Two separated orogenic events may have occurred respectively at ~1.95 Ga and ~1.85 Ga in the Hengshan–Wutai area. The older orogeny was resulted from continental collision and the younger one may be caused by within-plate deformation. The final exhumation of the high-grade rocks formed in the older (i.e. 1.95 Ga) orogeny should be related with the younger deformation/metamorphic event. For more details, please refer to <span>https://doi.org/10.1016/j.lithos.2019.02.001.</span></p>


2020 ◽  
Author(s):  
Linus Villiger ◽  
Dominik Zbinden ◽  
Antonio Pio Rinaldi ◽  
Paul Antony Selvadurai ◽  
Hannes Krietsch ◽  
...  

<p>Several decameter-scale in-situ stimulation experiments were conducted in crystalline rock at the Grimsel Test Site, Switzerland, with the aim to advance our understanding of the seismo-hydro-mechanical processes associated with deep geothermal reservoir stimulation. To allow comparability between the experiments, a standardized injection protocol was applied for all experiments. Induced seismicity was recorded using acoustic emission sensors and accelerometers, which were distributed along tunnel walls and within four boreholes. Hydro-mechanical responses of the fault zones were measured using grouted longitudinal fiberoptic strain sensors and open pressure monitoring borehole intervals. A total of four ductile shear zones (with brittle overprint) and two brittle-ductile shear zones have been stimulated during these experiments.</p><p>Here we present an analysis of heterogeneous permeability evolution within a target shear zone during ongoing stimulation. The shear zone in question is an originally ductile shear zone which contains a single fracture in the injection interval. The observed planar seismicity cloud indicates that most of the stimulation process was confined within the target shear zone. Hydraulic characterization of the injection interval before and after stimulation revealed an enhancement in interval transmissivity from 8.3<sup>-</sup>10<sup>-11</sup> m<sup>2</sup>/s to 1.5<sup>-7</sup> m<sup>2</sup>/s. Within the reservoir, the seismo-hydro-mechanical data (i.e. seismicity cloud, pressure peaks and local deformation) spatiotemporally coincide, suggesting that permeability enhancement along the shear zone is highly localized and heterogeneous. Thus, we argue that the permeability evolution is linked to asperity distribution and breakdown within the shear zone.</p><p>The conceptual model developed from the experimental analysis is implemented in a three-dimensional numerical model, with which we attempt to simulate the directional permeability creation observed in the experiment. The model accounts for a discrete planar fault zone of finite thickness with distributed low-permeability, brittle asperities embedded in a more permeable damage zone mimicking the ductile shear zone at Grimsel. The hydro-mechanical processes are modeled with the TOUGH-FLAC simulator, which sequentially couples fluid flow and poroelastic deformation within the fault and the surrounding medium. A Mohr-Coulomb failure criterion is used to simulate asperity reactivation, which can lead to permeability enhancement of the reactivated area.</p>


2020 ◽  
Author(s):  
Ragini Saraswati ◽  
Tapas Kumar Biswal

<p>Shear zones in the high-grade terranes represent the tectonic- fossils of strain history. One such shear zones, namely Balaram-Jogdadi shear zones defining the terrane boundary of the Ambaji granulites of the South Delhi terrane Aravalli –Delhi Mobile belt, NW India, provide evidence for strain variation during exhumation of lower-middle crustal rocks. Compilation of field and microscopic analysis of various samples of mylonite from shear zones suggest that the part of shear zone contains high-grade mineral assemblages such as cordierite, sillimanite, spinel, garnet in quartzo-feldspathic mylonite rock and exhibit signature of thrusting in which garnet behaved as brittle phase and quartz and feldspar grain show ductile deformation. 2D and 3D strain analysis estimate a plane to flattening type of strain pattern. Principal strain planes are used to calculate the strain ratios for estimation of variation of strain along the shear zone. This study indicates high-grade mylonite accommodates high strain. The flow of rigid porphyroclasts estimates mean kinematic vorticity number varies from 0.47 to 0.68, which indicates the dominance of pure shear during shearing. Vorticity by the Rs/θ method in quartz grain estimates ranges from 0.7 to 0.95, suggesting a non-steady strain towards the end of deformation. High-grade mylonites were overprinted by low-temperature mylonitisation marked by minerals like quartz, feldspar, biotite in which feldspar porphyroclast shows brittle deformation and quartz, biotite show ductile deformation. Several shear kinematics indicate top-to-NW sinistral strike-slip shearing. Thus it has been interpreted that the shear zone had undergone non-steady strain. The initial thrusting phase was dominated by more pure shear component. The strike-slip shearing part was dominated by more simple shear component. Monazite geochronology sets the age of shearing at 834-778 Ma suggesting the exhumation was a transition event between Grenville to Pan-African orogeny.</p><p>Keywords: Shear zone, Deformation, Vorticity, 3D strain analysis, Monazite dating</p>


2020 ◽  
Author(s):  
Lingchao He ◽  
Jian Zhang ◽  
et al.

Table S1: Checked mineral content and grain size of EBSD samples; Table S2: Representative compositional analyses of minerals; Table S3: Zircon U-Pb isoplot data obtained by laser ablation–inductively coupled plasma–mass spectrometry for samples 17HS06-1 and 14630-1 from Zhujiafang; Table S4: Summary of isotopic ages for the high-pressure granulite of the Trans–North China orogen and Zhujiafang ductile shear zone.


2020 ◽  
Author(s):  
Lingchao He ◽  
Jian Zhang ◽  
et al.

Table S1: Checked mineral content and grain size of EBSD samples; Table S2: Representative compositional analyses of minerals; Table S3: Zircon U-Pb isoplot data obtained by laser ablation–inductively coupled plasma–mass spectrometry for samples 17HS06-1 and 14630-1 from Zhujiafang; Table S4: Summary of isotopic ages for the high-pressure granulite of the Trans–North China orogen and Zhujiafang ductile shear zone.


2020 ◽  
Author(s):  
Lingchao He ◽  
Jian Zhang ◽  
et al.

Table S1: Checked mineral content and grain size of EBSD samples; Table S2: Representative compositional analyses of minerals; Table S3: Zircon U-Pb isoplot data obtained by laser ablation–inductively coupled plasma–mass spectrometry for samples 17HS06-1 and 14630-1 from Zhujiafang; Table S4: Summary of isotopic ages for the high-pressure granulite of the Trans–North China orogen and Zhujiafang ductile shear zone.


Sign in / Sign up

Export Citation Format

Share Document