Polymerization of Isoprene Using Cationic Catalytic Systems Based on Triethylaluminum

2021 ◽  
Vol 499 (2) ◽  
pp. 73-76
Author(s):  
V. A. Rozentsvet ◽  
N. A. Sablina ◽  
D. M. Ulyanova ◽  
P. M. Tolstoy ◽  
I. A. Novakov
Keyword(s):  
2016 ◽  
Vol 10 (3) ◽  
pp. 259-270
Author(s):  
Ludmila Matienko ◽  
◽  
Larisa Mosolova ◽  
Vladimir Binyukov ◽  
Gennady Zaikov ◽  
...  

Mechanism of catalysis with binary and triple catalytic systems based on redox inactive metal (lithium) compound {LiSt+L2} and {LiSt+L2+PhOH} (L2=DMF or HMPA), in the selective ethylbenzene oxidation by dioxygen into -phenylethyl hydroperoxide is researched. The results are compared with catalysis by nickel-lithium triple system {NiII(acac)2+LiSt+PhOH} in selective ethylbenzene oxidation to PEH. The role of H-bonding in mechanism of catalysis is discussed. The possibility of the stable supramolecular nanostructures formation on the basis of triple systems, {LiSt+L2+PhOH}, due to intermolecular H-bonds, is researched with the AFM method.


2019 ◽  
Author(s):  
Enrico Bergamaschi ◽  
Frédéric Beltran ◽  
Christopher Teskey

<p></p><p></p><p>Switchable catalysis offers opportunities to control the rate or selectivity of a reaction <i>via</i> a stimulus such as pH or light. However, few examples of switchable catalytic systems that can facilitate multiple processes exist. Here we report a rare example of such dual-functional, switchable catalysis. Featuring an easily prepared, bench-stable cobalt(I) hydride complex in conjunction with pinacolborane, we can completely alter the reaction outcome between two widely employed transformations – olefin migration and hydroboration – with visible light as the sole trigger. This dichotomy arises from ligand photodissociation which leads to metamorphosis of the active catalytic site, resulting in divergent mechanistic pathways.</p><p></p><p></p>


2020 ◽  
Author(s):  
Laurent Sévery ◽  
Jacek Szczerbiński ◽  
Mert Taskin ◽  
Isik Tuncay ◽  
Fernanda Brandalise Nunes ◽  
...  

The strategy of anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. The stability of molecular catalysts is, however, far less than that of traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here, we apply a non-covalent “click” chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces via host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and allows the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and readsorption of fresh guest. This strategy represents a new approach to practical molecular-based catalytic systems.


2019 ◽  
Author(s):  
Tristan Delcaillau ◽  
Alessandro Bismuto ◽  
Zhong Lian ◽  
Bill Morandi

A nickel-catalyzed carbon-sulfur bond metathesis has been developed to access high-value thioethers. 1,2-bis(dicyclohexylphosphino)ethane (dcype) is essential to promote this highly functional group tolerant reaction. Further, synthetically challenging macrocycles could be obtained in good yield in an unusual example of ring-closing metathesis which does not involve alkene bonds. In-depth organometallic studies support a reversible Ni(0)-Ni(II) pathway to product formation. Overall, this work does not only disclose a more sustainable and more functional group tolerant alternative to previous catalytic systems based on Pd, but also presents new applications and mechanistic information which are highly relevant to the further development and application of unusual single bond metathesis reactions.


2020 ◽  
Vol 24 ◽  
Author(s):  
Yanlin Zong ◽  
Qiankun Li ◽  
Hongliang Mu ◽  
Zhongbao Jian

Abstract:: The copolymers of carbon monoxide (CO) and olefins, namely polyketones, are a family of widely used materi-als. In the catalytic preparation of these materials, palladium(II) catalysts represent the most successful catalytic systems. The production of both alternating and non-alternating polyketones has been achieved, with great difference in their physical properties. Herein, a variety of palladium(II) catalysts employed for the copolymerization of CO with various olefinic mon-omers such as ethylene, α-olefins, styrene and polar vinyl monomers are fully summarized. The influence of important fac-tors such as solvents and counterions on specific copolymerization, is also discussed. This review aims to enlighten the de-sign of new Pd catalysts with improved properties, as well as the development of new polyketone materials.


Author(s):  
Mohsen Nikoorazm ◽  
Maryam Khanmoradi ◽  
Masoumeh Sayadian

Introduction:: MCM-41 was synthesized using the sol-gel method. Then two new transition metal complexes of Nickel (II) and Vanadium (IV), were synthesized by immobilization of adenine (6-aminopurine) into MCM-41 mesoporous. The compounds have been characterized by XRD, TGA, SEM, AAS and FT-IR spectral studies. Using these catalysts provided an efficient and enantioselective procedure for oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using hydrogen peroxide at room temperature. Materials and Methods:: To a solution of sulfide or thiol (1 mmol) and H2O2 (5 mmol), a determined amount of the catalyst was added. The reaction mixture was stirred at room temperature for the specific time under solvent free conditions. The progress of the reaction was monitored by TLC using n-hexane: acetone (8:2). Afterwards, the catalyst was removed from the reaction mixture by centrifugation and, then, washed with dichloromethane in order to give the pure products. Results:: All the products were obtained in excellent yields and short reaction times indicating the high activity of the synthesized catalysts. Besides, the catalysts can be recovered and reused for several runs without significant loss in their catalytic activity. Conclusion:: These catalytic systems furnish the products very quickly with excellent yields and VO-6AP-MCM-41 shows high catalytic activity compared to Ni-6AP-MCM-41.


1988 ◽  
Vol 53 (8) ◽  
pp. 1636-1646 ◽  
Author(s):  
Viliam Múčka ◽  
Kamil Lang

Some physical and catalytic properties of the two-component copper(II)oxide-chromium(III)oxide catalyst with different content of both components were studied using the decomposition of the aqueous solution of hydrogen peroxide as a testing reaction. It has been found that along to both basic components, the system under study contains also the spinel structure CuCr2O4, chromate washable by water and hexavalent ions of chromium unwashable by water. The soluble chromate is catalytically active. During the first period of the reaction the equilibrium is being established in both homogeneous and heterogeneous catalytic systems. The catalytic activity as well as the specific surface area of the washed solid is a non-monotonous function of its composition. It seems highly probable that the extreme values of both these quantities are not connected with the detected admixtures in the catalytic system. The system under study is very insensitive with regard to the applied doses of gamma radiation. Its catalytic properties are changed rather significantly after the thermal treatment and particularly after the partial reduction to low degree by hydrogen. The observed changes of the catalytic activity of the system under study are very probably in connection with the changes of the valence state of the catalytically active components of the catalyst.


Author(s):  
Arnold Boersma ◽  
Fiora Rosati ◽  
Gerard Roelfes
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3512
Author(s):  
Reem Shomal ◽  
Babatunde Ogubadejo ◽  
Toyin Shittu ◽  
Eyas Mahmoud ◽  
Wei Du ◽  
...  

Biodiesel is a promising candidate for sustainable and renewable energy and extensive research is being conducted worldwide to optimize its production process. The employed catalyst is an important parameter in biodiesel production. Metal–organic frameworks (MOFs), which are a set of highly porous materials comprising coordinated bonds between metals and organic ligands, have recently been proposed as catalysts. MOFs exhibit high tunability, possess high crystallinity and surface area, and their order can vary from the atomic to the microscale level. However, their catalytic sites are confined inside their porous structure, limiting their accessibility for biodiesel production. Modification of MOF structure by immobilizing enzymes or ionic liquids (ILs) could be a solution to this challenge and can lead to better performance and provide catalytic systems with higher activities. This review compiles the recent advances in catalytic transesterification for biodiesel production using enzymes or ILs. The available literature clearly indicates that MOFs are the most suitable immobilization supports, leading to higher biodiesel production without affecting the catalytic activity while increasing the catalyst stability and reusability in several cycles.


2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Laura Raimondi ◽  
Chiara Faverio ◽  
Monica Fiorenza Boselli

AbstractChiral molecules hold a mail position in Organic and Biological Chemistry, so pharmaceutical industry needs suitable strategies for drug synthesis. Moreover, Green Chemistry procedures are increasingly required in order to avoid environment deterioration. Catalytic synthesis, in particular organocatalysis, in thus a continuously expanding field. A survey of more recent researches involving chiral imidazolidinones is here presented, with a particular focus on immobilized catalytic systems.


Sign in / Sign up

Export Citation Format

Share Document