Exact solutions of Wick-type stochastic Korteweg – de Vries equation

2012 ◽  
Vol 90 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Sheng Zhang

An algorithm is devised for using the compatibility method to find symmetries and similarity reductions of Wick-type stochastic partial differential equations. To illustrate the validity and advantages of the devised algorithm, the Wick-type stochastic Korteweg – de Vries equation is considered. With the aid of Hermite transformation and white noise theory, we obtain a symmetry and corresponding reduction of the Wick-type stochastic Korteweg – de Vries equation. Furthermore, some new similarity solutions are obtained including Jacobi elliptic function solutions, hyperbolic function solutions, and trigonometric function solutions.

2019 ◽  
Vol 23 (4) ◽  
pp. 2403-2411 ◽  
Author(s):  
Bo Xu ◽  
Sheng Zhang

In this paper, the (4+1)-dimensional Fokas equation is solved by the generalized F-expansion method, and new exact solutions with arbitrary functions are obtained. The obtained solutions include Jacobi elliptic function solutions, hyperbolic function solutions and trigonometric function solutions. It is shown that the generalized F-expansion method can be used for constructing exact solutions with arbitrary functions of some other high dimensional partial differential equations in fluids.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Yin Li ◽  
Ruiying Wei ◽  
Guoming Jian

Firstly, based on the improved sub-ODE method and the bifurcation method of dynamical systems, we investigate the bifurcation of solitary waves in the compound KdV-Burgers-type equation. Secondly, numbers of solitary patterns solutions are given for each parameter condition and numerical simulations are used to display the dynamical characteristics. Finally, we obtain twelve solitary patterns solutions under some parameter conditions, such as the trigonometric function solutions and the hyperbolic function solutions.


2009 ◽  
Vol 64 (9-10) ◽  
pp. 540-552
Author(s):  
Mamdouh M. Hassan

With the aid of symbolic computation and the extended F-expansion method, we construct more general types of exact non-travelling wave solutions of the (2+1)-dimensional dispersive long wave system. These solutions include single and combined Jacobi elliptic function solutions, rational solutions, hyperbolic function solutions, and trigonometric function solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Fanwei Meng

We propose a new variable-coefficient Riccati subequation method to establish new exact solutions for nonlinear differential-difference equations. For illustrating the validity of this method, we apply it to the discrete (2 + 1)-dimensional Toda lattice equation. As a result, some new and generalized traveling wave solutions including hyperbolic function solutions, trigonometric function solutions, and rational function solutions are obtained.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Guiying Chen ◽  
Xiangpeng Xin ◽  
Hanze Liu

Theexp(-Φ(ξ))-expansion method is improved by presenting a new auxiliary ordinary differential equation forΦ(ξ). By using this method, new exact traveling wave solutions of two important nonlinear evolution equations, i.e., the ill-posed Boussinesq equation and the unstable nonlinear Schrödinger equation, are constructed. The obtained solutions contain Jacobi elliptic function solutions which can be degenerated to the hyperbolic function solutions and the trigonometric function solutions. The present method is very concise and effective and can be applied to other types of nonlinear evolution equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yanqin Liu ◽  
Limei Yan

A new generalized fractional subequation method based on the relationship of fractional coupled equations is proposed. This method is applied to the space-time fractional coupled Konopelchenko-Dubrovsky equations and Nizhnik-Novikov-Veselov equations. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions, and rational solutions. It is observed that the proposed approach provides a simple and reliable tool for solving many other fractional coupled differential equations.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 871-880
Author(s):  
Bo Tang ◽  
Jiajia Tao ◽  
Shijun Chen ◽  
Junfeng Qu ◽  
Qian Wang ◽  
...  

Abstract In the present study, we deal with the space–time fractional KdV–MKdV equation and the space–time fractional Konopelchenko–Dubrovsky equation in the sense of the conformable fractional derivative. By means of the extend \left(\tfrac{G^{\prime} }{G}\right) -expansion method, many exact solutions are obtained, which include hyperbolic function solutions, trigonometric function solutions and rational solutions. The results show that the extend \left(\tfrac{G^{\prime} }{G}\right) -expansion method is an efficient technique for solving nonlinear fractional partial equations. We also provide some graphical representations to demonstrate the physical features of the obtained solutions.


Author(s):  
Ozkan Guner

In this paper, solitary-wave ansatz and the (G?/G)-expansion methods have been used to obtain exact solutions of the fractional regularized long-wave (RLW) and coupled Nizhnik-Novikov-Veselov (NNV) equation. As a result, three types of exact analytical solutions such as rational function solutions, trigonometric function solutions, hyperbolic function solutions are formally derived these equations. Proposed methods are more powerful and can be applied to other fractional differential equations arising in mathematical physics.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sami Injrou ◽  
Ramez Karroum ◽  
Nadia Deeb

In this paper, the subequation method and the sine-cosine method are improved to give a set of traveling wave solutions for the time-fractional generalized Fitzhugh–Nagumo equation with time-dependent coefficients involving the conformable fractional derivative. Various structures of solutions such as the hyperbolic function solutions, the trigonometric function solutions, and the rational solutions are constructed. These solutions may be useful to describe several physical applications. The results show that these methods are shown to be affective and easy to apply for this type of nonlinear fractional partial differential equations (NFPDEs) with time-dependent coefficients.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Adem Kılıcman ◽  
Reza Abazari

We establish exact solutions for the Schrödinger-Boussinesq Systemiut+uxx−auv=0,vtt−vxx+vxxxx−b(|u|2)xx=0, whereaandbare real constants. The (G′/G)-expansion method is used to construct exact periodic and soliton solutions of this equation. Our work is motivated by the fact that the (G′/G)-expansion method provides not only more general forms of solutions but also periodic and solitary waves. As a result, hyperbolic function solutions and trigonometric function solutions with parameters are obtained. These solutions may be important and of significance for the explanation of some practical physical problems.


Sign in / Sign up

Export Citation Format

Share Document