KINEMATICS AND WORKSPACE ANALYSIS OF A 3 DEGREE OF FREEDOM PARALLEL MECHANISM WITH PARALLELOGRAM LINKAGE

2017 ◽  
Vol 41 (5) ◽  
pp. 922-935
Author(s):  
HongJun San ◽  
JunSong Lei ◽  
JiuPeng Chen ◽  
ZhengMing Xiao ◽  
JunJie Zhao

In this paper, a 3-DOF translational parallel mechanism with parallelogram linkage was studied. According to the space vector relation between the moving platform and the fixed base, the direct and inverse position solutions of this mechanism was deduced through analytical method. In addition, the error of the algorithm was analyzed, and the algorithm had turned out to be effective and to have the satisfactory computational precision. On the above basis, the workspace of this mechanism was found through graphical method, which was compared with that of finding through Monte Carlo method, and there was the feasibility for analyzing the workspace of the mechanism by graphical method. The characteristic of the mechanism was analyzed by comparing the results of two analysis methods, which provided a theoretical basis for the application of the mechanism.

Author(s):  
Alessandro Cammarata ◽  
Rosario Sinatra

This paper presents kinematic and dynamic analyses of a two-degree-of-freedom pointing parallel mechanism. The mechanism consists of a moving platform, connected to a fixed platform by two legs of type PUS (prismatic-universal-spherical). At first a simplified kinematic model of the pointing mechanism is introduced. Based on this proposed model, the dynamics equations of the system using the Natural Orthogonal Complement method are developed. Numerical examples of the inverse dynamics results are presented by numerical simulation.


Author(s):  
Daxing Zeng ◽  
Sijun Zhu ◽  
Zhen Huang

This paper presents a family of novel lower-mobility decoupled parallel mechanisms (DPMs), which consists of one 5-DOF (degree of freedom) DPM, two 4-DOF DPMs, three 3-DOF DPMs, and three 2-DOF DPMs. The basic feature of this family is that the moving platform and the fixed base of the DPMs are connected by two limbs and the motion of the moving platform is fully decoupled. Then the constraint screw method is used to analyze the motion feature of all DPMs presented in this paper. The mobility of these DPMs has also been calculated by the Modified Grubler-Kutzbach criterion. All the DPMs in this paper are simple and no computation is required for real-time control.


Author(s):  
A. V. Ostrik ◽  
I. V. Bugay

The variant of Monte Carlo method for calculation of transfer of ionizing radiation having quanta energy of Eph=1-200keV is considered. The hybrid numerical and analytical method of calculation is offered. At numerical realization of each trajectory photo-absorption of quanta is considered analytically and other types of interactions (Compton and Relay scatterings, fluorescence) are realized in a random way. Calculations results for transfer of radiation having Plank spectrum are given for flat multilayered barriers.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yong Xu ◽  
Zheng Liang ◽  
Jiali Liu

This paper proposes the concept of full configuration state of metamorphic mechanism. Based on the concept, the configuration synthesis principle of metamorphic parallel mechanism is put forward. Firstly, a metamorphic parallel mechanism in full configuration state is synthesized, and then full configuration state evolves into a specific configuration state by increasing constraints or decreasing degrees of freedom. A reconfigurable moving platform based on the triple symmetric Bricard spatial closed-loop mechanism with a single degree of freedom is proposed. Based on this, a new method for switching motion configuration states of the metamorphic parallel mechanism is constructed. According to the configuration synthesis principle presented above, a novel metamorphic parallel mechanism that can switch between three- and four-degree-of-freedom is synthesized, and then the triple symmetric Bricard spatial closed-loop mechanism is used as the reconfigurable moving platform (that is, the reconfigurable foot of a walking robot) of the metamorphic mechanism, and thus, a novel metamorphic parallel leg mechanism is created. The screw theory is used to verify the degrees of freedom of the new type of metamorphic parallel leg. The proposed metamorphic parallel leg mechanism is expected to improve flexibility and adaptability of walking robots in unstructured environment.


Author(s):  
Saman Lessanibahri ◽  
Philippe Cardou ◽  
Stéphane Caro

Abstract This paper addresses the optimum design, configuration and workspace analysis of a Cable-Driven Parallel Robot with an embedded tilt-roll wrist. The manipulator is a hybrid robot consisting in an under-constrained moving-platform accommodating a tilt-roll wrist. The embedded wrist provides large amplitudes of tilt and roll rotations and a large translational workspace obtained by the moving-platform. This manipulator is suitable for tasks requiring large rotation and translation workspaces like tomography scanning, camera-orienting devices and visual surveillance. The moving-platform is an eight-degree-of-freedom articulated mechanism with large translational and rotational workspaces and it is suspended from a fixed frame by six cables. The manipulator employs two bi-actuated cables, i.e., cable loops to transmit the power from motors fixed on the ground to the tilt-roll wrist. Therefore, the manipulator achieves better dynamic performances due to a lower inertia of its moving-platform.


Author(s):  
Jiangzhen Guo ◽  
Dan Wang ◽  
Rui Fan ◽  
Wuyi Chen

Traditional parallel mechanisms are usually characterized by small tilting capability. To overcome this problem, a 3-degree-of-freedom parallel swivel head with large tilting capacity is proposed in this article. The proposed parallel swivel head, which is structurally developed from a conventional 3-PRS parallel mechanism, can achieve a large tilting capability by means of structural improvements. First, a modified spherical joint with a maximum tilting angle of ±120° is devised to diminish the physical restrictions on the orientation workspace. Second, a UPS typed leg is introduced for the sake of singularity elimination. The superiority of the proposed parallel swivel head is theoretically proved by investigations of singularity-free orientation workspace and then is experimentally validated using a prototype fabricated. The theoretical and experimental results illustrate that the proposed parallel swivel head has a large tilting capacity and thus can be used as swivel head for a hybrid machine tool which is designed to be capable of realizing both horizontal and vertical machining.


2012 ◽  
Vol 215-216 ◽  
pp. 142-145
Author(s):  
Zhi Qiang Gong ◽  
Jin Chen ◽  
Yao Ming Li ◽  
Cheng Jun Wang ◽  
Chao Hang

The study describes the characteristic of field seedling vacuum-vibration tray precision seeder, discuses the necessity for horizontal adjustment on the precision seeder. Horizontal adjustment parallel mechanism is designed, DOF and characteristics of parallel mechanism’s moving platform are systematically analysized, proved the mechanism can meet the horizontal adjustment of two-level tilt angle,which provided a theoretical basis for horizontal adjustment of the seeder.


Sign in / Sign up

Export Citation Format

Share Document