Isolation and characterization of thermophilic bacteria capable of degrading dehydroabietic acid

1999 ◽  
Vol 45 (6) ◽  
pp. 513-519 ◽  
Author(s):  
Zhongtang Yu ◽  
William W Mohn

Using a semi-continuous enrichment method, we isolated two thermophilic bacterial strains, which could completely degrade abietane resin acids, including dehydroabietic acid (DhA). Strain DhA-73, isolated from a laboratory-scale bioreactor treating bleached kraft mill effluent at 55°C, grew on DhA as sole carbon source; while DhA-71, isolated from municipal compost, required dilute tryptic soy broth for growth on DhA. DhA-71 grew on DhA from 30°C to 60°C with maximum growth at 50°C; while, DhA-73 grew on DhA from 37°C to 60°C with maximum growth at 55°C. At 55°C, the doubling times for DhA-71 and DhA-73 were 3.3 and 3.7 h, respectively. DhA-71 and DhA-73 had growth yields of 0.26 and 0.19 g of protein per g of DhA, respectively. During growth on DhA, both strains converted DhA to CO2, biomass, and dissolved organic carbon. Analyses of the 16S-rDNA sequences of these two strains suggest that they belong to two new genera in theRubrivivax subgroup of the beta subclass of the Proteobacteria. Strains DhA-71 and DhA-73 are the first two bacteria isolated and characterized that are capable of biodegradation of resin acids at high temperatures. This study provided direct evidence for biodegradation of resin acids and feasibility for biotreatment of pulp mill effluent at elevated temperatures.Key words: biodegradation, resin acid, semi-continuous enrichment, thermophiles.

1997 ◽  
Vol 35 (2-3) ◽  
pp. 33-39
Author(s):  
Yi Zhang ◽  
P. A. Bicho ◽  
C. Breuil ◽  
J. N. Saddler ◽  
S. N. Liss

All resin acids are diterpenoid carboxylic acids that are components of softwood extractives and they are known to contribute to much of the toxicity of pulp mill effluents. Although biological treatment systems can efficiently remove resin acids during normal operating conditions, resin acid breakthroughs occasionally occur. Recently we isolated five bacterial strains from bleach kraft effluents that degrade dehydroabietic acid (DHA), a resin acid commonly found in effluents. In this study we examined the ability of two bacterial strains (BKME 5 and BKME 9) to grow on chemithermomechanical pulping (CTMP) effluent and degrade DHA. Both of the strains could grow on CTMP effluents, but did not degrade DHA. COD measurement showed that both strains used other organic substrates in CTMP effluent. When nutrients (NH4⊕, PO43−, minerals and vitamins) were added to the effluent, both growth and DHA degradation increased significantly. The strains used DHA and other organic sources in the CTMP effluent simultaneously. The stimulated growth resulting from use of other organic material did not increase the rate of DHA degradation. It was found that ammonium played an important role in the DHA degradation of both strains. Without added ammonium, DHA degradation did not occur. Other nutrients also played important roles in DHA degradation by BKME 9.


1996 ◽  
Vol 42 (5) ◽  
pp. 423-430 ◽  
Author(s):  
C. A. Morgan ◽  
R. C. Wyndham

Thirteen resin acid degrading bacteria enriched on abietic or dehydroabietic acids were isolated from waste water from the aerated stabilization basin of a bleached kraft pulp mill. Standard biochemical tests were used to characterize each isolate. Each isolate was tested for its ability to degrade six abietane- and pimarane-type resin acids. Resin acid concentrations were determined by high pressure liquid chromatography and UV absorbance. Cluster analysis based on phenotypic characteristics identified two distinct clusters of degraders that differed in their ability to utilize carbohydrates as carbon sources. Fatty acid methyl ester analysis of representative isolates from each cluster identified A19-6a and D11-13 as Comamonas and Alcaligenes species, respectively. To determine genotypic relatedness, enterobacterial repetitive intergenic consensus sequences were used to amplify genomic DNA fragments from 10 isolates. These results supported the phenotypic analysis for all isolates tested except A19-5 and A19-6b. These two organisms were clustered closely together based on phenotype but had distinctly different banding patterns, suggesting that they are not related genotypically. All isolates degraded a subset of the six resin acid congeners. Isolates A19-3, A19-6a, A19-6b, and D11-37 were the most effective at degrading all six congeners.Key words: biodegradation, resin acids, metabolism, Comamonas, Alcaligenes.


1997 ◽  
Vol 43 (7) ◽  
pp. 599-611 ◽  
Author(s):  
Steven N. Liss ◽  
Paul A. Bicho ◽  
John N. Saddler

Resin acids, a group of diterpenoid carboxylic acids present mainly in softwood species, are present in many pulp mill effluents and toxic to fish in recipient waters. They are considered to be readily biodegradable. However, their removal across biological treatment systems has been shown to vary. Recent studies indicate that natural resin acids and transformation products may accumulate in sediments and pose acute and chronic toxicity to fish. Several resin acid biotransformation compounds have also been shown to bioaccumulate and to be more resistant to biodegradation than the original material. Until recently, the microbiology of resin-acid degradation has received only scant attention. Although wood-inhabiting fungi have been shown to decrease the level of resin present in wood, there is no conclusive evidence that fungi can completely degrade these compounds. In contrast, a number of bacterial isolates have recently been described which are able to utilize dehydroabietic or isopimaric acids as their sole carbon source. There appears to be an unusually high degree of substrate specificity with respect to the utilization of abietane congeners and the presence of substituents. Pimaranes do not appear to be attacked to the same extent as the abietanes. This paper reviews the occurrence, chemistry, toxicity, and biodegradation of resin acids in relation to the biological treatment of pulp and paper mill effluents.Key words: resin acids, biodegradation, pulp mill effluents.


2006 ◽  
Vol 72 (5) ◽  
pp. 3228-3235 ◽  
Author(s):  
Milind A. Patel ◽  
Mark S. Ou ◽  
Roberta Harbrucker ◽  
Henry C. Aldrich ◽  
Marian L. Buszko ◽  
...  

ABSTRACT Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals by the appropriate microbes. Due to the differences in the optimum conditions for the activity of the fungal cellulases that are required for depolymerization of cellulose to fermentable sugars and the growth and fermentation characteristics of the current industrial microbes, simultaneous saccharification and fermentation (SSF) of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity, leading to a higher-than-required cost of cellulase in SSF. We have isolated bacterial strains that grew and fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to l(+)-lactic acid at 50�C and pH 5.0, conditions that are also optimal for fungal cellulase activity. Xylose was metabolized by these new isolates through the pentose-phosphate pathway. As expected for the metabolism of xylose by the pentose-phosphate pathway, [13C]lactate accounted for more than 90% of the total 13C-labeled products from [13C]xylose. Based on fatty acid profile and 16S rRNA sequence, these isolates cluster with Bacillus coagulans, although the B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. These new B. coagulans isolates have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource, for the production of fuels and chemicals.


2002 ◽  
Vol 48 (1) ◽  
pp. 49-59 ◽  
Author(s):  
C A Morgan ◽  
R C Wyndham

Resin acids are tricyclic diterpenes that are toxic to aquatic life when released in high concentrations in pulp mill effluents. These naturally formed organic acids are readily degraded by bacteria and fungi; nevertheless, many of the mechanisms involved are still unknown. We report the localization, cloning, and sequencing of genes for abietane degradation (9.18 kb; designated tdt (tricyclic diterpene) LRSABCD) from the γ-Proteobacterium Pseudomonas diterpeniphila A19-6a. Using gene knockout mutants, we demonstrate that tdtL, encoding a putative CoA ligase, is required for growth on abietic and dehydroabietic acids. A second gene knockout in tdtD, encoding a putative cytochrome P450 monooxygenase, reduced the growth of strain A19-6a on abietic and dehydroabietic acids as sole sources of carbon and energy, but did not eliminate growth. The degree of homology between P450TdtDand P450TerpC, the closest known P450 homologue to TdtD, identifies TdtD as a new member of the P450 superfamily. Hybridization of six of the tdt genes to genomic DNA of a related resin acid degrading bacterium Pseudomonas abietaniphila BKME-9 identified tdt homologues in this strain that utilizes aromatic ring dioxygenase genes (dit) to open the ring structure of abietic and dehydroabietic acids. These results suggest the tdt and dit genes may function in concert to allow these Pseudomonas strains to degrade resin acids. Homologues of several of the tdt genes were detected in resin acid degrading Ralstonia and Comamonas species within the β- and γ-Proteobacteria.Key words: resin acid, tdt gene, biodegradation, Pseudomonas.


2003 ◽  
Vol 69 (2) ◽  
pp. 769-778 ◽  
Author(s):  
Philip Dennis ◽  
Elizabeth A. Edwards ◽  
Steven N. Liss ◽  
Roberta Fulthorpe

ABSTRACT A DNA microarray to monitor the expression of bacterial metabolic genes within mixed microbial communities was designed and tested. Total RNA was extracted from pure and mixed cultures containing the 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium Ralstonia eutropha JMP134, and the inducing agent 2,4-D. Induction of the 2,4-D catabolic genes present in this organism was readily detected 4, 7, and 24 h after the addition of 2,4-D. This strain was diluted into a constructed mixed microbial community derived from a laboratory scale sequencing batch reactor. Induction of two of five 2,4-D catabolic genes (tfdA and tfdC) from populations of JMP134 as low as 105 cells/ml was clearly detected against a background of 108 cells/ml. Induction of two others (tfdB and tfdE) was detected from populations of 106 cells/ml in the same background; however, the last gene, tfdF, showed no significant induction due to high variability. In another experiment, the induction of resin acid degradative genes was statistically detectable in sludge-fed pulp mill effluent exposed to dehydroabietic acid in batch experiments. We conclude that microarrays will be useful tools for the detection of bacterial gene expression in wastewaters and other complex systems.


1999 ◽  
Vol 40 (11-12) ◽  
pp. 273-280 ◽  
Author(s):  
William W. Mohn ◽  
Vincent J. J. Martin ◽  
Zhongtang Yu

A better understanding of the mechanisms and ecology of resin acid biodegradation will contribute to improved performance of existing treatment systems and development of new treatment systems for pulp and paper mill effluents. Using molecular genetic methods, we have partially elucidated the biochemical pathway for degradation of abietane resin acids by Pseudomonas abietaniphila BKME-9. We identified genes encoding putative membrane-associated proteins that are required for abietane metabolism. These proteins may function in cellular uptake of, or response to, resin acids. Genetic and physiological evidence suggests that a monooxygenase is involved in the biochemical pathway. A quantitative PCR assay was developed for ditA1, a gene from BKME-9 encoding resin acid degradation. In an aerated lagoon treating pulp mill effluent, a population carrying ditA1 was found, which was a small fraction (10−7) of the total microbial community. This population was evenly distributed throughout the system and was a stable member of the community over time. Quantitative PCR assays were used to monitor Pseudomonas abietaniphila BKME-9 and Zoogloea resiniphila DhA-35 when they were separately used to inoculate a complex microbial communities in laboratory sequencing batch reactors. Both inocula were stably maintained in the community for 24 days. These inocula stimulated resin acid removal by the community when it was stressed by high pH or by high resin acid loading.


2002 ◽  
Vol 68 (12) ◽  
pp. 6013-6020 ◽  
Author(s):  
Yul Roh ◽  
Shi V. Liu ◽  
Guangshan Li ◽  
Heshu Huang ◽  
Tommy J. Phelps ◽  
...  

ABSTRACT Five bacterial strains were isolated from anaerobic enrichment cultures that had originated from inoculations with samples collected from the deep subsurface environments of the millions-of-years-old, geologically and hydrologically isolated Piceance Basin in Colorado. Small-subunit rRNA gene-based analyses indicated that all of these bacteria were closely related to Thermoanaerobacter ethanolicus, with similarities of 99.4 to 99.5%. Three isolates (X513, X514, and X561) from the five bacterial strains were used to examine physiological characteristics. These thermophilic bacteria were able to use acetate, glucose, hydrogen, lactate, pyruvate, succinate, and xylose as electron donors while reducing Fe(III), cobalt(III), chromium(VI), manganese(IV), and uranium(VI) at 60°C. One of the isolates (X514) was also able to utilize hydrogen as an electron donor for Fe(III) reduction. These bacteria exhibited diverse mineral precipitation capabilities, including the formation of magnetite (Fe3O4), siderite (FeCO3), rhodochrosite (MnCO3), and uraninite (UO2). The gas composition of the incubation headspace and the ionic composition of the incubation medium exerted profound influences on the types of minerals formed. The susceptibility of the thermophilic Fe(III)-reducing cultures to metabolic inhibitors specific for ferric reductase, hydrogenase, and electron transport indicated that iron reduction by these bacteria is an enzymatic process.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4121 ◽  
Author(s):  
Natalia A. Luchnikova ◽  
Kseniya M. Ivanova ◽  
Ekaterina V. Tarasova ◽  
Victoria V. Grishko ◽  
Irina B. Ivshina

Organic wood extractives—resin acids—significantly contribute to an increase in the toxicity level of pulp and paper industry effluents. Entering open ecosystems, resin acids accumulate and have toxic effects on living organisms, which can lead to the ecological imbalance. Among the most effective methods applied to neutralize these ecotoxicants is enzymatic detoxification using microorganisms. A fundamental interest in the in-depth study of the oxidation mechanisms of resin acids and the search for their key biodegraders is increasing every year. Compounds from this group receive attention because of the need to develop highly effective procedures of resin acid removal from pulp and paper effluents and also the possibility to obtain their derivatives with pronounced pharmacological effects. Over the past fifteen years, this is the first report analyzing the data on distribution, the impacts on living organisms, and the microbial transformation of resin acids. Using the example of dehydroabietic acid—the dominant compound of resin acids in effluents—the review discusses the features of interactions between microorganisms and this pollutant and also highlights the pathways and main products of resin acid bioconversion.


1999 ◽  
Vol 40 (11-12) ◽  
pp. 281-288 ◽  
Author(s):  
A. G. Werker ◽  
Eric R. Hall

This paper highlights results from a fundamental study into the fate of resin acids during biological treatment. Pulp mills in Canada rely on biological treatment systems for the removal of resin acids that are released from wood during pulping and bleaching. These are priority contaminants for the pulping industry since they have been associated with events of toxicity breakthrough. Although tighter mill control has helped to minimise the frequency of these events, it would be useful to have an understanding of the basic limitations of biological systems as the last line of defence for limiting resin acid discharges. The dependence of physico-chemical and biological phenomena on pH will influence the chances for successful biological removal of resin acids. Changes in pH within the typical range used for biological treatment significantly alter the bioavailability of resin acids and the ecology of the microorganisms responsible for their degradation. Changes in resin acid loading during continuous treatment also affect the microbial ecology. Further, the capacity of a treatment system to degrade resin acids is a function of the contaminant loading. Time delays for microbial community acclimation in response to a shift-up in loading are significantly long and are also a function of pH. The capacity to remove resin acids is readily gained and lost in a biological system. Hence the bioreactor operating conditions in conjunction with the period and amplitude of loading fluctuations can impact on the extent of biological removal for resin acids. Consequently, biological systems can be severely compromised by influent transient loading when it comes to the removal of specific contaminants like resin acids.


Sign in / Sign up

Export Citation Format

Share Document