Biharmonic Submanifolds and Biharmonic Maps in Riemannian Geometry

10.1142/11610 ◽  
2020 ◽  
Author(s):  
Ye-Lin Ou ◽  
Bang-Yen Chen
2005 ◽  
Vol 2005 (22) ◽  
pp. 3575-3586 ◽  
Author(s):  
K. Arslan ◽  
R. Ezentas ◽  
C. Murathan ◽  
T. Sasahara

Biharmonic maps between Riemannian manifolds are defined as critical points of the bienergy and generalized harmonic maps. In this paper, we give necessary and sufficient conditions for nonharmonic Legendre curves and anti-invariant surfaces of3-dimensional(κ,μ)-manifolds to be biharmonic.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 280
Author(s):  
Loriano Bonora ◽  
Rudra Prakash Malik

This article, which is a review with substantial original material, is meant to offer a comprehensive description of the superfield representations of BRST and anti-BRST algebras and their applications to some field-theoretic topics. After a review of the superfield formalism for gauge theories, we present the same formalism for gerbes and diffeomorphism invariant theories. The application to diffeomorphisms leads, in particular, to a horizontal Riemannian geometry in the superspace. We then illustrate the application to the description of consistent gauge anomalies and Wess–Zumino terms for which the formalism seems to be particularly tailor-made. The next subject covered is the higher spin YM-like theories and their anomalies. Finally, we show that the BRST superfield formalism applies as well to the N=1 super-YM theories formulated in the supersymmetric superspace, for the two formalisms go along with each other very well.


Author(s):  
Andreas Bernig ◽  
Dmitry Faifman ◽  
Gil Solanes

AbstractThe recently introduced Lipschitz–Killing curvature measures on pseudo-Riemannian manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We show that they are uniquely characterized by this property. We apply this characterization to prove a Künneth-type formula for Lipschitz–Killing curvature measures, and to classify the invariant generalized valuations and curvature measures on all isotropic pseudo-Riemannian space forms.


The paper is a continuation of the last paper communicated to these 'Proceedings.' In that paper, which we shall refer to as the first paper, a more general expression for space curvature was obtained than that which occurs in Riemannian geometry, by a modification of the Riemannian covariant derivative and by the use of a fifth co-ordinate. By means of a particular substitution (∆ μσ σ = 1/ψ ∂ψ/∂x μ ) it was shown that this curvature takes the form of the second order equation of quantum mechanics. It is not a matrix equation, however but one which has the character of the wave equation as it occurred in the earlier form of the quantum theory. But it contains additional terms, all of which can be readily accounted for in physics, expect on which suggested an identification with energy of the spin.


Author(s):  
F. P. POULIS ◽  
J. M. SALIM

Motivated by an axiomatic approach to characterize space-time it is investigated a reformulation of Einstein's gravity where the pseudo-riemannian geometry is substituted by a Weyl one. It is presented the main properties of the Weyl geometry and it is shown that it gives extra contributions to the trajectories of test particles, serving as one more motivation to study general relativity in Weyl geometry. It is introduced its variational formalism and it is established the coupling with other physical fields in such a way that the theory acquires a gauge symmetry for the geometrical fields. It is shown that this symmetry is still present for the red-shift and it is concluded that for cosmological models it opens the possibility that observations can be fully described by the new geometrical scalar field. It is concluded then that this reformulation, although representing a theoretical advance, still needs a complete description of their objects.


1966 ◽  
Vol 73 (3) ◽  
pp. 327
Author(s):  
G. F. Feeman ◽  
Detlef Laugwitz ◽  
Fritz Steinhardt
Keyword(s):  

1999 ◽  
Vol 40 (3) ◽  
pp. 1518-1548 ◽  
Author(s):  
Aristophanes Dimakis ◽  
Folkert Müller-Hoissen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document