IMPROVEMENT OF IMAGE CLASSIFICATION USING WAVELET COEFFICIENTS WITH STRUCTURED-BASED NEURAL NETWORK

2008 ◽  
Vol 18 (03) ◽  
pp. 195-205 ◽  
Author(s):  
WEIBAO ZOU ◽  
ZHERU CHI ◽  
KING CHUEN LO

Image classification is a challenging problem in organizing a large image database. However, an effective method for such an objective is still under investigation. A method based on wavelet analysis to extract features for image classification is presented in this paper. After an image is decomposed by wavelet, the statistics of its features can be obtained by the distribution of histograms of wavelet coefficients, which are respectively projected onto two orthogonal axes, i.e., x and y directions. Therefore, the nodes of tree representation of images can be represented by the distribution. The high level features are described in low dimensional space including 16 attributes so that the computational complexity is significantly decreased. 2800 images derived from seven categories are used in experiments. Half of the images were used for training neural network and the other images used for testing. The features extracted by wavelet analysis and the conventional features are used in the experiments to prove the efficacy of the proposed method. The classification rate on the training data set with wavelet analysis is up to 91%, and the classification rate on the testing data set reaches 89%. Experimental results show that our proposed approach for image classification is more effective.

2020 ◽  
Vol 26 (4) ◽  
pp. 434-453
Author(s):  
Milan Sečujski ◽  
Darko Pekar ◽  
Siniša Suzić ◽  
Anton Smirnov ◽  
Tijana Nosek

The paper presents a novel architecture and method for training neural networks to produce synthesized speech in a particular voice and speaking style, based on a small quantity of target speaker/style training data. The method is based on neural network embedding, i.e. mapping of discrete variables into continuous vectors in a low-dimensional space, which has been shown to be a very successful universal deep learning technique. In this particular case, different speaker/style combinations are mapped into different points in a low-dimensional space, which enables the network to capture the similarities and differences between speakers and speaking styles more efficiently. The initial model from which speaker/style adaptation was carried out was a multi-speaker/multi-style model based on 8.5 hours of American English speech data which corresponds to 16 different speaker/style combinations. The results of the experiments show that both versions of the obtained system, one using 10 minutes and the other as little as 30 seconds of target data, outperform the state of the art in parametric speaker/style-dependent speech synthesis. This opens a wide range of application of speaker/style dependent speech synthesis based on small quantities of training data, in domains ranging from customer interaction in call centers to robot-assisted medical therapy.


2014 ◽  
Vol 602-605 ◽  
pp. 2170-2173
Author(s):  
Xiao Fei Li

The popular approaches for face recognition are PCA and LDA methods. But PCA could not capture the simplest invariance unless information is explicitly provided in the training data and LDA approach suffers from a small size problem. 2DPCA could reduce high dimensional data to a low-dimensional space.2DLDA could extract the proper features from image matrices based on LDA. Ensemble incomplete wavelet analysis method for face recognition is proposed based on improved fuzzy C-Means in this paper. The method proposed shows that it improves the accuracy and reduces the running time.


Author(s):  
M. Takadoya ◽  
M. Notake ◽  
M. Kitahara ◽  
J. D. Achenbach ◽  
Q. C. Guo ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Jeffrey Micher

We present a method for building a morphological generator from the output of an existing analyzer for Inuktitut, in the absence of a two-way finite state transducer which would normally provide this functionality. We make use of a sequence to sequence neural network which “translates” underlying Inuktitut morpheme sequences into surface character sequences. The neural network uses only the previous and the following morphemes as context. We report a morpheme accuracy of approximately 86%. We are able to increase this accuracy slightly by passing deep morphemes directly to output for unknown morphemes. We do not see significant improvement when increasing training data set size, and postulate possible causes for this.


Author(s):  
Yang Fang ◽  
Xiang Zhao ◽  
Zhen Tan

Network Embedding (NE) is an important method to learn the representations of network via a low-dimensional space. Conventional NE models focus on capturing the structure information and semantic information of vertices while neglecting such information for edges. In this work, we propose a novel NE model named BimoNet to capture both the structure and semantic information of edges. BimoNet is composed of two parts, i.e., the bi-mode embedding part and the deep neural network part. For bi-mode embedding part, the first mode named add-mode is used to express the entity-shared features of edges and the second mode named subtract-mode is employed to represent the entity-specific features of edges. These features actually reflect the semantic information. For deep neural network part, we firstly regard the edges in a network as nodes, and the vertices as links, which will not change the overall structure of the whole network. Then we take the nodes' adjacent matrix as the input of the deep neural network as it can obtain similar representations for nodes with similar structure. Afterwards, by jointly optimizing the objective function of these two parts, BimoNet could preserve both the semantic and structure information of edges. In experiments, we evaluate BimoNet on three real-world datasets and task of relation extraction, and BimoNet is demonstrated to outperform state-of-the-art baseline models consistently and significantly.


2014 ◽  
Vol 17 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Gurjeet Singh ◽  
Rabindra K. Panda ◽  
Marc Lamers

The reported study was undertaken in a small agricultural watershed, namely, Kapgari in Eastern India having a drainage area of 973 ha. The watershed was subdivided into three sub-watersheds on the basis of drainage network and land topography. An attempt was made to relate the continuously monitored runoff data from the sub-watersheds and the whole-watershed with the rainfall and temperature data using the artificial neural network (ANN) technique. The reported study also evaluated the bias in the prediction of daily runoff with shorter length of training data set using different resampling techniques with the ANN modeling. A 10-fold cross-validation (CV) technique was used to find the optimum number of hidden neurons in the hidden layer and to avoid neural network over-fitting during the training process for shorter length of data. The results illustrated that the ANN models developed with shorter length of training data set avoid neural network over-fitting during the training process, using a 10-fold CV method. Moreover, the biasness was investigated using the bootstrap resampling technique based ANN (BANN) for short length of training data set. In comparison with the 10-fold CV technique, the BANN is more efficient in solving the problems of the over-fitting and under-fitting during training of models for shorter length of data set.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
R. Manjula Devi ◽  
S. Kuppuswami ◽  
R. C. Suganthe

Artificial neural network has been extensively consumed training model for solving pattern recognition tasks. However, training a very huge training data set using complex neural network necessitates excessively high training time. In this correspondence, a new fast Linear Adaptive Skipping Training (LAST) algorithm for training artificial neural network (ANN) is instituted. The core essence of this paper is to ameliorate the training speed of ANN by exhibiting only the input samples that do not categorize perfectly in the previous epoch which dynamically reducing the number of input samples exhibited to the network at every single epoch without affecting the network’s accuracy. Thus decreasing the size of the training set can reduce the training time, thereby ameliorating the training speed. This LAST algorithm also determines how many epochs the particular input sample has to skip depending upon the successful classification of that input sample. This LAST algorithm can be incorporated into any supervised training algorithms. Experimental result shows that the training speed attained by LAST algorithm is preferably higher than that of other conventional training algorithms.


2014 ◽  
Vol 998-999 ◽  
pp. 1042-1045
Author(s):  
Xu An Qiao ◽  
Jing Liu

The pattern recognition process control diagram, this paper puts forward a new method of training neural network. It only needs a small training data set can complete this work. This method is also compatible with the training algorithm, and get a better network performance. Pattern recognition success rate is very high in the larger parameter range, but also has some comparability.


1999 ◽  
Vol 39 (1) ◽  
pp. 451 ◽  
Author(s):  
H. Crocker ◽  
C.C. Fung ◽  
K.W. Wong

The producing M. australis Sandstone of the Stag Oil Field is a bioturbated glauconitic sandstone that is difficult to evaluate using conventional methods. Well log and core data are available for the Stag Field and for the nearby Centaur–1 well. Eight wells have log data; six also have core data.In the past few years artificial intelligence has been applied to formation evaluation. In particular, artificial neural networks (ANN) used to match log and core data have been studied. The ANN approach has been used to analyse the producing Stag Field sands. In this paper, new ways of applying the ANN are reported. Results from simple ANN approach are unsatisfactory. An integrated ANN approach comprising the unsupervised Self-Organising Map (SOM) and the Supervised Back Propagation Neural Network (BPNN) appears to give a more reasonable analysis.In this case study the mineralogical and petrophysical characteristics of a cored well are predicted from the 'training' data set of the other cored wells in the field. The prediction from the ANN model is then used for comparison with the known core data. In this manner, the accuracy of the prediction is determined and a prediction qualifier computed.This new approach to formation evaluation should provide a match between log and core data that may be used to predict the characteristics of a similar uncored interval. Although the results for the Stag Field are satisfactory, further study applying the method to other fields is required.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1465
Author(s):  
Taikyeong Jeong

When attempting to apply a large-scale database that holds the behavioral intelligence training data of deep neural networks, the classification accuracy of the artificial intelligence algorithm needs to reflect the behavioral characteristics of the individual. When a change in behavior is recognized, that is, a feedback model based on a data connection model is applied, an analysis of time series data is performed by extracting feature vectors and interpolating data in a deep neural network to overcome the limitations of the existing statistical analysis. Using the results of the first feedback model as inputs to the deep neural network and, furthermore, as the input values of the second feedback model, and interpolating the behavioral intelligence data, that is, context awareness and lifelog data, including physical activities, involves applying the most appropriate conditions. The results of this study show that this method effectively improves the accuracy of the artificial intelligence results. In this paper, through an experiment, after extracting the feature vector of a deep neural network and restoring the missing value, the classification accuracy was verified to improve by about 20% on average. At the same time, by adding behavioral intelligence data to the time series data, a new data connection model, the Deep Neural Network Feedback Model, was proposed, and it was verified that the classification accuracy can be improved by about 8 to 9% on average. Based on the hypothesis, the F (X′) = X model was applied to thoroughly classify the training data set and test data set to present a symmetrical balance between the data connection model and the context-aware data. In addition, behavioral activity data were extrapolated in terms of context-aware and forecasting perspectives to prove the results of the experiment.


Sign in / Sign up

Export Citation Format

Share Document