scholarly journals Modeling of daily runoff from a small agricultural watershed using artificial neural network with resampling techniques

2014 ◽  
Vol 17 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Gurjeet Singh ◽  
Rabindra K. Panda ◽  
Marc Lamers

The reported study was undertaken in a small agricultural watershed, namely, Kapgari in Eastern India having a drainage area of 973 ha. The watershed was subdivided into three sub-watersheds on the basis of drainage network and land topography. An attempt was made to relate the continuously monitored runoff data from the sub-watersheds and the whole-watershed with the rainfall and temperature data using the artificial neural network (ANN) technique. The reported study also evaluated the bias in the prediction of daily runoff with shorter length of training data set using different resampling techniques with the ANN modeling. A 10-fold cross-validation (CV) technique was used to find the optimum number of hidden neurons in the hidden layer and to avoid neural network over-fitting during the training process for shorter length of data. The results illustrated that the ANN models developed with shorter length of training data set avoid neural network over-fitting during the training process, using a 10-fold CV method. Moreover, the biasness was investigated using the bootstrap resampling technique based ANN (BANN) for short length of training data set. In comparison with the 10-fold CV technique, the BANN is more efficient in solving the problems of the over-fitting and under-fitting during training of models for shorter length of data set.

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2005 ◽  
Vol 488-489 ◽  
pp. 793-796 ◽  
Author(s):  
Hai Ding Liu ◽  
Ai Tao Tang ◽  
Fu Sheng Pan ◽  
Ru Lin Zuo ◽  
Ling Yun Wang

A model was developed for the analysis and prediction of correlation between composition and mechanical properties of Mg-Al-Zn (AZ) magnesium alloys by applying artificial neural network (ANN). The input parameters of the neural network (NN) are alloy composition. The outputs of the NN model are important mechanical properties, including ultimate tensile strength, tensile yield strength and elongation. The model is based on multilayer feedforward neural network. The NN was trained with comprehensive data set collected from domestic and foreign literature. A very good performance of the neural network was achieved. The model can be used for the simulation and prediction of mechanical properties of AZ system magnesium alloys as functions of composition.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
R. Manjula Devi ◽  
S. Kuppuswami ◽  
R. C. Suganthe

Artificial neural network has been extensively consumed training model for solving pattern recognition tasks. However, training a very huge training data set using complex neural network necessitates excessively high training time. In this correspondence, a new fast Linear Adaptive Skipping Training (LAST) algorithm for training artificial neural network (ANN) is instituted. The core essence of this paper is to ameliorate the training speed of ANN by exhibiting only the input samples that do not categorize perfectly in the previous epoch which dynamically reducing the number of input samples exhibited to the network at every single epoch without affecting the network’s accuracy. Thus decreasing the size of the training set can reduce the training time, thereby ameliorating the training speed. This LAST algorithm also determines how many epochs the particular input sample has to skip depending upon the successful classification of that input sample. This LAST algorithm can be incorporated into any supervised training algorithms. Experimental result shows that the training speed attained by LAST algorithm is preferably higher than that of other conventional training algorithms.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 591
Author(s):  
M. Shyamala Devi ◽  
A.N. Sruthi ◽  
P. Balamurugan

At present, skin cancers are extremely the most severe and life-threatening kind of cancer. The majority of the pores and skin cancers are completely remediable at premature periods. Therefore, a premature recognition of pores and skin cancer can effectively protect the patients. Due to the progress of modern technology, premature recognition is very easy to identify. It is not extremely complicated to discover the affected pores and skin cancers with the exploitation of Artificial Neural Network (ANN). The treatment procedure exploits image processing strategies and Artificial Intelligence. It must be noted that, the dermoscopy photograph of pores and skin cancer is effectively determined and it is processed to several pre-processing for the purpose of noise eradication and enrichment in image quality. Subsequently, the photograph is distributed through image segmentation by means of thresholding. Few components distinctive for skin most cancers regions. These features are mined the practice of function extraction scheme - 2D Wavelet Transform scheme. These outcomes are provides to the Back-Propagation Neural (BPN) Network for effective classification. This completely categorizes the data set into either cancerous or non-cancerous. 


Author(s):  
Guanghui Su ◽  
K. Fukuda ◽  
K. Morita

Artificial neural network (ANN) has the advantage that the best-fit correlations of experimental data will no longer be necessary for predicting unknowns from the known parameters. The ANN was applied to predict the pool boiling curves in this paper. The database of experimentel data presented by Berenson, Dhuga et al., and Bui and Dhir etc. were used in the analysis. The database is subdivided in two subsets. The first subset is used to train the network and the second one is used to test the network after the training process. The input parameters of the ANN are: wall superheat ΔTw, surface roughness, steady/transient heating/transient cooling, subcooling, Surface inclination and pressure. The output parameter is heat flux q. The proposed methodology allows us to achieve the accuracy that satisfies the user’s convergence criterion and it is suitable for pool boiling curve data processing.


2014 ◽  
Vol 902 ◽  
pp. 431-436 ◽  
Author(s):  
A. Shahpanah ◽  
S. Poursafary ◽  
S. Shariatmadari ◽  
A. Gholamkhasi ◽  
S.M. Zahraee

A queuing network model related to arrival, departure and berthing process of ships at port container terminal is presented in this paper. The important datas collected from PTP port container terminal located at Malaysia. Based on the case study the model was built with using Arena 13.5 simulation software. Especially this study proposes a hybrid approach consisting of Genetic algorithm (GA), Artificial Neural Network (ANN) to find the the optimum number of equipments at berthing area of port container terminal. The input data that used in ANN obtained from Arena results. The main goal of this study is reduced waiting time of each ship at port container terminal, and Based on the result the optimum waiting time 50 will be achieved.


10.29007/lpmh ◽  
2018 ◽  
Author(s):  
Faezeh Ghaleh Navi ◽  
Hamed Mazandarani Zadeh ◽  
Dragan Savic

Groundwater is one of the major sources of fresh water. Maintenance and management of this vital resource is so important especially in arid and semi-arid regions. Reliable and accurate groundwater quality assessment is essential as a basic data for any groundwater management studies. The aim of this study is to compare the accuracy of two Artificial Neural Network (ANN) and Kriging methods in predicting chlorine in groundwater. In case of ANN, we created an appropriate emulator, which minimize the prediction error by changing the parameters of the neural network, including the number of layers. The best Kriging model is also obtained by changing the variogram function, such that the Gaussian variogram has the least error in interpolation of the amount of chlorine. To evaluate the accuracy of these two methods, the mean square error (MSE) and Coefficient of determination (R2) are used. The data set consists of the amount of chlorine, in a monthly basis, measured at 112 observation wells from 1999 to 2015 in aquifer Qazvin, Iran. MSE values for ANN and Kriging are 14.8 and 15.4, respectively, which indicate that the ANN has a better performance and is more capable of predicting chlorine values in comparison with Kriging.


eLEKTRIKA ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 21
Author(s):  
Mukti Dwi Cahyo ◽  
Sri Heranurweni ◽  
Harmini Harmini

Electric power is one of the main needs of society today, ranging from household consumers to industry. The demand for electricity increases every year. So as to achieve adjustments between power generation and power demand, the electricity provider (PLN) must know the load needs or electricity demand for some time to come. There are many studies on the prediction of electricity loads in electricity, but they are not specific to each consumer sector. One of the predictions of this electrical load can be done using the Radial Basis Function Artificial Neural Network (ANN) method. This method uses training data learning from 2010 - 2017 as a reference data. Calculations with this method are based on empirical experience of electricity provider planning which is relatively difficult to do, especially in terms of corrections that need to be made to changes in load. This study specifically predicts the electricity load in the Semarang Rayon network service area in 2019-2024. The results of this Artificial Neural Network produce projected electricity demand needs in 2019-2024 with an average annual increase of 1.01% and peak load in 2019-2024. The highest peak load in 2024 and the dominating average is the household sector with an increase of 1% per year. The accuracy results of the Radial Basis Function model reached 95%.


Author(s):  
Sri Hartati ◽  
Sri Nurdiati

Abstract— In recent years, the occurrence of protein shortage of children under 5 years old in many poor area has dramatically increased. Since this situation can cause serious problem to children like a delay in their growth, delay in their development and also disfigurement, disability, dependency, the early diagnose of protein shortage is vital. Many applications have been developed in performing disease detection such as an expert system for diagnosing diabetics and artificial neural network (ANN) applications for diagnosing breast cancer, acidosis diseases, and lung cancer. This paper is mainly focusing on the development of protein shortage disease diagnosing application using Backpropagation Neural Network (BPNN) technique. It covers two classes of protein shortage that are Heavy Protein Deficiency. On top of this, a BPNN model is constructed based on result analysis of the training and testing from the developed application. The model has been successfully tested using new data set. It shows that the BPNN is able to early diagnose heavy protein deficiency accurately. Keywords— Artificial Neural Network, Backpropagation Neural Network, Protein Deficiency.


Sign in / Sign up

Export Citation Format

Share Document