scholarly journals SEMISTABILITY OF RESTRICTED TANGENT BUNDLES AND A QUESTION OF I. BISWAS

2013 ◽  
Vol 24 (01) ◽  
pp. 1250122 ◽  
Author(s):  
PRISKA JAHNKE ◽  
IVO RADLOFF

Let M be a complex projective manifold with the property that for any compact Riemann surface C and holomorphic map f : C → M the pullback of the tangent bundle of M is semistable. We prove that in this case M is a curve or a finite étale quotient of an abelian variety answering a conjecture of Biswas.

Author(s):  
Jeffrey D. Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

AbstractFor a complex projective manifold, Walker has defined a regular homomorphism lifting Griffiths’ Abel–Jacobi map on algebraically trivial cycle classes to a complex abelian variety, which admits a finite homomorphism to the Griffiths intermediate Jacobian. Recently Suzuki gave an alternate, Hodge-theoretic, construction of this Walker Abel–Jacobi map. We provide a third construction based on a general lifting property for surjective regular homomorphisms, and prove that the Walker Abel–Jacobi map descends canonically to any field of definition of the complex projective manifold. In addition, we determine the image of the l-adic Bloch map restricted to algebraically trivial cycle classes in terms of the coniveau filtration.


2020 ◽  
Vol 31 (11) ◽  
pp. 2050087
Author(s):  
Thomas Peternell

We investigate when the tangent bundle of a projective manifold has a nontrivial first-order (or positive-dimensional) deformation. This leads to a new conjectural characterization of the complex projective space.


2019 ◽  
pp. 1-17
Author(s):  
KIRTI JOSHI

In this article, I give a crystalline characterization of abelian varieties amongst the class of smooth projective varieties with trivial tangent bundles in characteristic $p>0$ . Using my characterization, I show that a smooth, projective, ordinary variety with trivial tangent bundle is an abelian variety if and only if its second crystalline cohomology is torsion-free. I also show that a conjecture of KeZheng Li about smooth projective varieties with trivial tangent bundles in characteristic $p>0$ is true for smooth projective surfaces. I give a new proof of a result by Li and prove a refinement of it. Based on my characterization of abelian varieties, I propose modifications of Li’s conjecture, which I expect to be true.


Author(s):  
Genki Hosono ◽  
Masataka Iwai ◽  
Shin-ichi Matsumura

Abstract In this paper, we develop the theory of singular Hermitian metrics on vector bundles. As an application, we give a structure theorem of a projective manifold X with pseudo-effective tangent bundle; X admits a smooth fibration $X \to Y$ to a flat projective manifold Y such that its general fibre is rationally connected. Moreover, by applying this structure theorem, we classify all the minimal surfaces with pseudo-effective tangent bundle and study general nonminimal surfaces, which provide examples of (possibly singular) positively curved tangent bundles.


Author(s):  
Dinh Tuan Huynh ◽  
Duc-Viet Vu

AbstractLet {f:\mathbb{C}\to X} be a transcendental holomorphic curve into a complex projective manifold X. Let L be a very ample line bundle on {X.} Let s be a very generic holomorphic section of L and D the zero divisor given by {s.} We prove that the geometric defect of D (defect of truncation 1) with respect to f is zero. We also prove that f almost misses general enough analytic subsets on X of codimension 2.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Davide Cassani ◽  
Grégoire Josse ◽  
Michela Petrini ◽  
Daniel Waldram

Abstract We discuss consistent truncations of eleven-dimensional supergravity on a six-dimensional manifold M, preserving minimal $$ \mathcal{N} $$ N = 2 supersymmetry in five dimensions. These are based on GS ⊆ USp(6) structures for the generalised E6(6) tangent bundle on M, such that the intrinsic torsion is a constant GS singlet. We spell out the algorithm defining the full bosonic truncation ansatz and then apply this formalism to consistent truncations that contain warped AdS5×wM solutions arising from M5-branes wrapped on a Riemann surface. The generalised U(1) structure associated with the $$ \mathcal{N} $$ N = 2 solution of Maldacena-Nuñez leads to five-dimensional supergravity with four vector multiplets, one hypermultiplet and SO(3) × U(1) × ℝ gauge group. The generalised structure associated with “BBBW” solutions yields two vector multiplets, one hypermultiplet and an abelian gauging. We argue that these are the most general consistent truncations on such backgrounds.


Axioms ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 72
Author(s):  
Mohamed Tahar Kadaoui Abbassi ◽  
Noura Amri

In this paper, we study natural paracontact magnetic trajectories in the unit tangent bundle, i.e., those that are associated to g-natural paracontact metric structures. We characterize slant natural paracontact magnetic trajectories as those satisfying a certain conservation law. Restricting to two-dimensional base manifolds of constant Gaussian curvature and to Kaluza–Klein type metrics on their unit tangent bundles, we give a full classification of natural paracontact slant magnetic trajectories (and geodesics).


Sign in / Sign up

Export Citation Format

Share Document