Segre invariant and a stratification of the moduli space of coherent systems
The aim of this paper is to generalize the [Formula: see text]-Segre invariant for vector bundles to coherent systems. Let [Formula: see text] be a non-singular irreducible complex projective curve of genus [Formula: see text] and [Formula: see text] be the moduli space of [Formula: see text]-stable coherent systems of type [Formula: see text] on [Formula: see text]. For any pair of integers [Formula: see text] with [Formula: see text], [Formula: see text] we define the [Formula: see text]-Segre invariant, and prove that it defines a lower semicontinuous function on the families of coherent systems. Thus, the [Formula: see text]-Segre invariant induces a stratification of the moduli space [Formula: see text] into locally closed subvarieties [Formula: see text] according to the value [Formula: see text] of the function. We determine an above bound for the [Formula: see text]-Segre invariant and compute a bound for the dimension of the different strata [Formula: see text]. Moreover, we give some conditions under which the different strata are nonempty. To prove the above results, we introduce the notion of coherent systems of subtype [Formula: see text].