complex projective variety
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 2)

Author(s):  
Fabrizio Anella

Abstract Let X be a complex projective variety with log terminal singularities and vanishing augmented irregularity. In this paper, we prove that if X admits a relatively minimal genus-one fibration, then it contains a subvariety of codimension one covered by rational curves contracted by the fibration. We then focus on the case of varieties with numerically trivial canonical bundle and we discuss several consequences of this result.


Author(s):  
Laura Escobar ◽  
Megumi Harada

Abstract Tropical geometry and the theory of Newton–Okounkov bodies are two methods that produce toric degenerations of an irreducible complex projective variety. Kaveh and Manon showed that the two are related. We give geometric maps between the Newton–Okounkov bodies corresponding to two adjacent maximal-dimensional prime cones in the tropicalization of $X$. Under a technical condition, we produce a natural “algebraic wall-crossing” map on the underlying value semigroups (of the corresponding valuations). In the case of the tropical Grassmannian $Gr(2,m)$, we prove that the algebraic wall-crossing map is the restriction of a geometric map. In an appendix by Nathan Ilten, he explains how the geometric wall-crossing phenomenon can also be derived from the perspective of complexity-one $T$-varieties; Ilten also explains the connection to the “combinatorial mutations” studied by Akhtar–Coates–Galkin–Kasprzyk.


2020 ◽  
Vol 296 (3-4) ◽  
pp. 1645-1672 ◽  
Author(s):  
Ariyan Javanpeykar ◽  
Ljudmila Kamenova

Abstract Demailly’s conjecture, which is a consequence of the Green–Griffiths–Lang conjecture on varieties of general type, states that an algebraically hyperbolic complex projective variety is Kobayashi hyperbolic. Our aim is to provide evidence for Demailly’s conjecture by verifying several predictions it makes. We first define what an algebraically hyperbolic projective variety is, extending Demailly’s definition to (not necessarily smooth) projective varieties over an arbitrary algebraically closed field of characteristic zero, and we prove that this property is stable under extensions of algebraically closed fields. Furthermore, we show that the set of (not necessarily surjective) morphisms from a projective variety Y to a projective algebraically hyperbolic variety X that map a fixed closed subvariety of Y onto a fixed closed subvariety of X is finite. As an application, we obtain that $${{\,\mathrm{Aut}\,}}(X)$$ Aut ( X ) is finite and that every surjective endomorphism of X is an automorphism. Finally, we explore “weaker” notions of hyperbolicity related to boundedness of moduli spaces of maps, and verify similar predictions made by the Green–Griffiths–Lang conjecture on hyperbolic projective varieties.


2019 ◽  
Vol 22 (08) ◽  
pp. 1950079 ◽  
Author(s):  
Miguel Ángel Barja ◽  
Rita Pardini ◽  
Lidia Stoppino

Let [Formula: see text] be a smooth complex projective variety, [Formula: see text] a morphism to an abelian variety such that [Formula: see text] injects into [Formula: see text] and let [Formula: see text] be a line bundle on [Formula: see text]; denote by [Formula: see text] the minimum of [Formula: see text] for [Formula: see text]. The so-called Clifford–Severi inequalities have been proven in [M. A. Barja, Generalized Clifford–Severi inequality and the volume of irregular varieties, Duke Math. J. 164(3) (2015) 541–568; M. A. Barja, R. Pardini and L. Stoppino, Linear systems on irregular varieties, J. Inst. Math. Jussieu (2019) 1–39; doi:10.1017/S1474748019000069]; in particular, for any [Formula: see text] there is a lower bound for the volume given by: [Formula: see text] and, if [Formula: see text] is pseudoeffective, [Formula: see text] In this paper, we characterize varieties and line bundles for which the above Clifford–Severi inequalities are equalities.


2019 ◽  
Vol 155 (7) ◽  
pp. 1444-1456
Author(s):  
Sho Ejiri ◽  
Yoshinori Gongyo

We study the Iitaka–Kodaira dimension of nef relative anti-canonical divisors. As a consequence, we prove that given a complex projective variety with klt singularities, if the anti-canonical divisor is nef, then the dimension of a general fibre of the maximal rationally connected fibration is at least the Iitaka–Kodaira dimension of the anti-canonical divisor.


2019 ◽  
Vol 19 (6) ◽  
pp. 2087-2125 ◽  
Author(s):  
Miguel Ángel Barja ◽  
Rita Pardini ◽  
Lidia Stoppino

Let $X$ be a normal complex projective variety, $T\subseteq X$ a subvariety of dimension $m$ (possibly $T=X$) and $a:X\rightarrow A$ a morphism to an abelian variety such that $\text{Pic}^{0}(A)$ injects into $\text{Pic}^{0}(T)$; let $L$ be a line bundle on $X$ and $\unicode[STIX]{x1D6FC}\in \text{Pic}^{0}(A)$ a general element.We introduce two new ingredients for the study of linear systems on $X$. First of all, we show the existence of a factorization of the map $a$, called the eventual map of $L$ on $T$, which controls the behavior of the linear systems $|L\otimes \unicode[STIX]{x1D6FC}|_{|T}$, asymptotically with respect to the pullbacks to the connected étale covers $X^{(d)}\rightarrow X$ induced by the $d$-th multiplication map of $A$.Second, we define the so-called continuous rank function$x\mapsto h_{a}^{0}(X_{|T},L+xM)$, where $M$ is the pullback of an ample divisor of $A$. This function extends to a continuous function of $x\in \mathbb{R}$, which is differentiable except possibly at countably many points; when $X=T$ we compute the left derivative explicitly.As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e., geographical bounds of the form $$\begin{eqnarray}\displaystyle \text{vol}_{X|T}(L)\geqslant C(m)h_{a}^{0}(X_{|T},L), & & \displaystyle \nonumber\end{eqnarray}$$ where $C(m)={\mathcal{O}}(m!)$ depends on several geometrical properties of $X$, $L$ or $a$.


2018 ◽  
Vol 2018 (743) ◽  
pp. 133-161 ◽  
Author(s):  
Yohan Brunebarbe

Abstract Let D be a simple normal crossing divisor in a smooth complex projective variety X. We show that the existence on X-D of a non-trivial polarized complex variation of Hodge structures with integral monodromy implies that the pair (X,D) has a non-zero logarithmic symmetric differential (a section of a symmetric power of the logarithmic cotangent bundle). When the corresponding period map is generically immersive, we show more precisely that the logarithmic cotangent bundle is big.


2018 ◽  
Vol 154 (7) ◽  
pp. 1534-1570 ◽  
Author(s):  
Adrian Langer ◽  
Carlos Simpson

Let$X$be a smooth complex projective variety with basepoint$x$. We prove that every rigid integral irreducible representation$\unicode[STIX]{x1D70B}_{1}(X\!,x)\rightarrow \operatorname{SL}(3,\mathbb{C})$is of geometric origin, i.e., it comes from some family of smooth projective varieties. This partially generalizes an earlier result by Corlette and the second author in the rank 2 case and answers one of their questions.


Author(s):  
Fouad El Zein ◽  
Loring W. Tu

This chapter proves Grothendieck's algebraic de Rham theorem. It first proves Grothendieck's algebraic de Rham theorem more or less from scratch for a smooth complex projective variety X, namely, that there is an isomorphism H*(Xₐₙ,ℂ) ≃ H*X,Ω‎subscript alg superscript bullet) between the complex singular cohomology of Xan and the hypercohomology of the complex Ω‎subscript alg superscript bullet of sheaves of algebraic differential forms on X. The proof necessitates a discussion of sheaf cohomology, coherent sheaves, and hypercohomology. The chapter then develops more machinery, mainly the Čech cohomology of a sheaf and the Čech cohomology of a complex of sheaves, as tools for computing hypercohomology. The chapter thus proves that the general case of Grothendieck's theorem is equivalent to the affine case.


Sign in / Sign up

Export Citation Format

Share Document