scholarly journals Limiting fluctuations in quantum gravity to diffeomorphisms

2021 ◽  
pp. 2150197
Author(s):  
Brian Slovick

Within the background field formalism of quantum gravity, I show that if the quantum fluctuations are limited to diffeomorphic gauge transformations rather than the physical degrees of freedom, as in conventional quantum field theory, all the quantum corrections vanish on shell and the effective action is equivalent to the classical action. In principle, the resulting theory is finite and unitary, and requires no renormalization. I also show that this is the unique parameterization that renders the path integral independent of the on-shell condition for the background field, a form of background independence. Thus, a connection is established between background independence and renormalizability and unitarity.

2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Axel Maas

Taking manifest invariance under both gauge symmetry and diffeomorphisms as a guiding principle physical objects are constructed for Yang-Mills-Higgs theory coupled to quantum gravity. These objects are entirely classified by quantum numbers defined in the tangent space. Applying the Fröhlich-Morchio-Strocchi mechanism to these objects reveals that they coincide with ordinary correlation functions in quantum-field theory, if quantum fluctuations of gravity and curvature become small. Taking these descriptions literally exhibits how quantum gravity fields need to dress quantum fields to create physical objects, i. e. giving a graviton component to ordinary observed particles. The same mechanism provides access to the physical spectrum of pure gravitational degrees of freedom.


2016 ◽  
Vol 31 (01) ◽  
pp. 1630001 ◽  
Author(s):  
L. D. Faddeev

The renormalizability of the Yang–Mills quantum field theory in four-dimensional space–time is discussed in the background field formalism.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Joaquim Gomis ◽  
Euihun Joung ◽  
Axel Kleinschmidt ◽  
Karapet Mkrtchyan

Abstract We construct a generalisation of the three-dimensional Poincaré algebra that also includes a colour symmetry factor. This algebra can be used to define coloured Poincaré gravity in three space-time dimensions as well as to study generalisations of massive and massless free particle models. We present various such generalised particle models that differ in which orbits of the coloured Poincaré symmetry are described. Our approach can be seen as a stepping stone towards the description of particles interacting with a non-abelian background field or as a starting point for a worldline formulation of an associated quantum field theory.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944006
Author(s):  
ChunJun Cao ◽  
Aidan Chatwin-Davies ◽  
Ashmeet Singh

According to the holographic bound, there is only a finite density of degrees of freedom in space when gravity is taken into account. Conventional quantum field theory does not conform to this bound, since in this framework, infinitely many degrees of freedom may be localized to any given region of space. In this paper, we explore the viewpoint that quantum field theory may emerge from an underlying theory that is locally finite-dimensional, and we construct a locally finite-dimensional version of a Klein–Gordon scalar field using generalized Clifford algebras. Demanding that the finite-dimensional field operators obey a suitable version of the canonical commutation relations makes this construction essentially unique. We then find that enforcing local finite dimensionality in a holographically consistent way leads to a huge suppression of the quantum contribution to vacuum energy, to the point that the theoretical prediction becomes plausibly consistent with observations.


2020 ◽  
pp. 289-318
Author(s):  
Giuseppe Mussardo

Chapter 8 introduces the key ideas of the renormalization group, including how they provide a theoretical scheme and a proper language to face critical phenomena. It covers the scaling transformations of a system and their implementations in the space of the coupling constants and reducing the degrees of freedom. From this analysis, the reader is led to the important notion of relevant, irrelevant and marginal operators and then to the universality of the critical phenomena. Furthermore, the chapter also covers (as regards the RG) transformation laws, effective Hamiltonians, the Gaussian model, the Ising model, operators of quantum field theory, universal ratios, critical exponents and β‎-functions.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040012
Author(s):  
M. D. Maia ◽  
V. B. Bezerra

An updated review of Kraichnan’s derivation of Einstein’s equations from quantum field theory is presented, including the period after the discovery of the Higgs mechanism and the inclusion of gravitation within the Standard Model of Fundamental Interactions.


2013 ◽  
Vol 28 (17) ◽  
pp. 1330023 ◽  
Author(s):  
MARCO BENINI ◽  
CLAUDIO DAPPIAGGI ◽  
THOMAS-PAUL HACK

Goal of this paper is to introduce the algebraic approach to quantum field theory on curved backgrounds. Based on a set of axioms, first written down by Haag and Kastler, this method consists of a two-step procedure. In the first one, it is assigned to a physical system a suitable algebra of observables, which is meant to encode all algebraic relations among observables, such as commutation relations. In the second step, one must select an algebraic state in order to recover the standard Hilbert space interpretation of a quantum system. As quantum field theories possess infinitely many degrees of freedom, many unitarily inequivalent Hilbert space representations exist and the power of such approach is the ability to treat them all in a coherent manner. We will discuss in detail the algebraic approach for free fields in order to give the reader all necessary information to deal with the recent literature, which focuses on the applications to specific problems, mostly in cosmology.


Sign in / Sign up

Export Citation Format

Share Document