scholarly journals QUANTUM FIELD THEORY ON CURVED BACKGROUNDS — A PRIMER

2013 ◽  
Vol 28 (17) ◽  
pp. 1330023 ◽  
Author(s):  
MARCO BENINI ◽  
CLAUDIO DAPPIAGGI ◽  
THOMAS-PAUL HACK

Goal of this paper is to introduce the algebraic approach to quantum field theory on curved backgrounds. Based on a set of axioms, first written down by Haag and Kastler, this method consists of a two-step procedure. In the first one, it is assigned to a physical system a suitable algebra of observables, which is meant to encode all algebraic relations among observables, such as commutation relations. In the second step, one must select an algebraic state in order to recover the standard Hilbert space interpretation of a quantum system. As quantum field theories possess infinitely many degrees of freedom, many unitarily inequivalent Hilbert space representations exist and the power of such approach is the ability to treat them all in a coherent manner. We will discuss in detail the algebraic approach for free fields in order to give the reader all necessary information to deal with the recent literature, which focuses on the applications to specific problems, mostly in cosmology.

Author(s):  
Daniele Colosi ◽  
◽  
Robert Oeckl ◽  
◽  
◽  
...  

We extend the framework of general boundary quantum field theory (GBQFT) to achieve a fully local description of realistic quantum field theories. This requires the quantization of non-Kähler polarizations which occur generically on timelike hypersurfaces in Lorentzian spacetimes as has been shown recently. We achieve this in two ways: On the one hand we replace Hilbert space states by observables localized on hypersurfaces, in the spirit of algebraic quantum field theory. On the other hand we apply the GNS construction to twisted star-structures to obtain Hilbert spaces, motivated by the notion of reflection positivity of the Euclidean approach to quantum field theory. As one consequence, the well-known representation of a vacuum state in terms of a sea of particle pairs in the Hilbert space of another vacuum admits a vast generalization to non-Kähler vacua, particularly relevant on timelike hypersurfaces.


2019 ◽  
Vol 34 (08) ◽  
pp. 1950037 ◽  
Author(s):  
R. G. G. Amorim ◽  
F. C. Khanna ◽  
A. P. C. Malbouisson ◽  
J. M. C. Malbouisson ◽  
A. E. Santana

The tilde conjugation rule in thermofield dynamics, equivalent to the modular conjugation in a [Formula: see text]-algebra, is used to develop unitary representations of the Poincaré group, where the Hilbert space has the phase space content, a symplectic Hilbert space. The state is described by a quasi-amplitude of probability, which is a sort of wave function in phase space, associated with the Wigner function. The quantum field theory in phase space is then constructed, including the quantization rules for the Klein–Gordon and the Dirac fields, the derivation of the electrodynamics in phase space and elements of a relativistic quantum kinetic theory. Towards a physical interpretation of the theory, propagators are associated with the corresponding Wigner functions. The Feynman rules follow accordingly with vertices similar to those of usual non-Abelian quantum field theories.


2004 ◽  
Vol 16 (04) ◽  
pp. 509-558 ◽  
Author(s):  
STEFAN HOLLANDS

The 1/N expansion in quantum field theory is formulated within an algebraic framework. For a scalar field taking values in the N by N hermitian matrices, we rigorously construct the gauge invariant interacting quantum field operators in the sense of power series in 1/N and the 't Hooft coupling parameter as members of an abstract *-algebra. The key advantages of our algebraic formulation over the usual formulation of the 1/N expansion in terms of Green's functions are (i) that it is completely local so that infrared divergencies in massless theories are avoided on the algebraic level and (ii) that it admits a generalization to quantum field theories on globally hypberbolic Lorentzian curved spacetimes. We expect that our constructions are also applicable in models possessing local gauge invariance such as Yang–Mills theories. The 1/N expansion of the renormalization group flow is constructed on the algebraic level via a family of *-isomorphisms between the algebras of interacting field observables corresponding to different scales. We also consider k-parameter deformations of the interacting field algebras that arise from reducing the symmetry group of the model to a diagonal subgroup with k factors. These parameters smoothly interpolate between situations of different symmetry.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944006
Author(s):  
ChunJun Cao ◽  
Aidan Chatwin-Davies ◽  
Ashmeet Singh

According to the holographic bound, there is only a finite density of degrees of freedom in space when gravity is taken into account. Conventional quantum field theory does not conform to this bound, since in this framework, infinitely many degrees of freedom may be localized to any given region of space. In this paper, we explore the viewpoint that quantum field theory may emerge from an underlying theory that is locally finite-dimensional, and we construct a locally finite-dimensional version of a Klein–Gordon scalar field using generalized Clifford algebras. Demanding that the finite-dimensional field operators obey a suitable version of the canonical commutation relations makes this construction essentially unique. We then find that enforcing local finite dimensionality in a holographically consistent way leads to a huge suppression of the quantum contribution to vacuum energy, to the point that the theoretical prediction becomes plausibly consistent with observations.


In this contribution, my purpose is to study a new mathematical instrument introduced by me in 1958-9: the tensor and spinor propagators. These propagators are extensions of the scalar propagator of Jordan-Pauli which plays an important part in quantum-field theory. It is possible to construct, with these propagators, commutators and anticommutators for the various free fields, in the framework of general relativity theory (see Lichnerowicz 1959 a, b, c , 1960, 1961 a, b, c ; and for an independent introduction of propagators DeWitt & Brehme 1960).


2014 ◽  
Vol 14 (11&12) ◽  
pp. 1014-1080 ◽  
Author(s):  
Stephen P. Jordan ◽  
Keith S. M. Lee ◽  
John Preskill

Quantum field theory provides the framework for the most fundamental physical theories to be confirmed experimentally and has enabled predictions of unprecedented precision. However, calculations of physical observables often require great computational complexity and can generally be performed only when the interaction strength is weak. A full understanding of the foundations and rich consequences of quantum field theory remains an outstanding challenge. We develop a quantum algorithm to compute relativistic scattering amplitudes in massive $\phi^4$ theory in spacetime of four and fewer dimensions. The algorithm runs in a time that is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. Thus, it offers exponential speedup over existing classical methods at high precision or strong coupling.


1999 ◽  
Vol 08 (02) ◽  
pp. 125-163 ◽  
Author(s):  
Louis Crane ◽  
David Yetter

We show that any 3D topological quantum field theory satisfying physically reasonable factorizability conditions has associated to it in a natural way a Hopf algebra object in a suitable tensor category. We also show that all objects in the tensor category have the structure of left-left crossed bimodules over the Hopf algebra object. For 4D factorizable topological quantum filed theories, we provide by analogous methods a construction of a Hopf algebra category.


2020 ◽  
pp. 575-621
Author(s):  
Giuseppe Mussardo

Chapter 16 covers the general properties of the integrable quantum field theories, including how an integrable quantum field theory is characterized by an infinite number of conserved charges. These theories are illustrated by means of significant examples, such as the Sine–Gordon model or the Toda field theories based on the simple roots of a Lie algebra. For the deformations of a conformal theory, it shown how to set up an efficient counting algorithm to prove the integrability of the corresponding model. The chapter focuses on two-dimensional models, and uses the term ‘two-dimensional’ to denote both a generic two-dimensional quantum field theory as well as its Euclidean version.


2020 ◽  
pp. 289-318
Author(s):  
Giuseppe Mussardo

Chapter 8 introduces the key ideas of the renormalization group, including how they provide a theoretical scheme and a proper language to face critical phenomena. It covers the scaling transformations of a system and their implementations in the space of the coupling constants and reducing the degrees of freedom. From this analysis, the reader is led to the important notion of relevant, irrelevant and marginal operators and then to the universality of the critical phenomena. Furthermore, the chapter also covers (as regards the RG) transformation laws, effective Hamiltonians, the Gaussian model, the Ising model, operators of quantum field theory, universal ratios, critical exponents and β‎-functions.


Sign in / Sign up

Export Citation Format

Share Document