scholarly journals TIME-INDEPENDENT SOLUTIONS TO THE TWO-DIMENSIONAL NONLINEAR O(3) SIGMA MODEL AND SURFACES OF CONSTANT MEAN CURVATURE

1995 ◽  
Vol 10 (03) ◽  
pp. 337-364 ◽  
Author(s):  
MICHAEL S. ODY ◽  
LEWIS H. RYDER

It is shown that time-independent solutions to the (2+1)-dimensional nonlinear O(3) sigma model may be placed in correspondence with surfaces of constant mean curvature in three-dimensional Euclidean space. The tools required to establish this correspondence are provided by the classical differential geometry of surfaces. A constant-mean-curvature surface induces a solution to the O(3) model through the identification of the Gauss map, or normal vector, of the surface with the field vector of the sigma model. Some explicit solutions, including the solitons and antisolitons discovered by Belavin and Polyakov, and a more general solution due to Purkait and Ray, are considered and the surfaces giving rise to them are found explicitly. It is seen, for example, that the Belavin-Polyakov solutions are induced by the Gauss maps of surfaces which are conformal to their spherical images, i.e. spheres and minimal surfaces, and that the Purkait-Ray solution corresponds to the family of constant-mean-curvature helicoids first studied by do Carmo and Dajczer in 1982. A generalization of this method to include time dependence may shed new light on the role of the Hopf invariant in this model.

Author(s):  
Luca Guzzardi ◽  
Epifanio G Virga

We propose three integral criteria that must be satisfied by all closed surfaces with constant mean curvature immersed in the three-dimensional Euclidean space. These criteria are integral identities that follow from requiring the second variation of the area functional to be invariant under rigid displacements. We obtain from them a new proof of the old result by Delaunay, to the effect that the sphere is the only closed axis-symmetric surface.


2002 ◽  
Vol 74 (3) ◽  
pp. 371-377 ◽  
Author(s):  
PEDRO A. HINOJOSA

In this work we will deal with disc type surfaces of constant mean curvature in the three dimensional hyperbolic space which are given as graphs of smooth functions over planar domains. From the various types of graphs that could be defined in the hyperbolic space we consider in particular the horizontal and the geodesic graphs. We proved that if the mean curvature is constant, then such graphs are equivalent in the following sense: suppose that M is a constant mean curvature surface in the 3-hyperbolic space such that M is a geodesic graph of a function rho that is zero at the boundary, then there exist a smooth function f that also vanishes at the boundary, such that M is a horizontal graph of f. Moreover, the reciprocal is also true.


Author(s):  
Renzo Caddeo ◽  
Irene I. Onnis ◽  
Paola Piu

AbstractIn this paper, we generalize a classical result of Bour concerning helicoidal surfaces in the three-dimensional Euclidean space $${\mathbb {R}}^3$$ R 3 to the case of helicoidal surfaces in the Bianchi–Cartan–Vranceanu (BCV) spaces, i.e., in the Riemannian 3-manifolds whose metrics have groups of isometries of dimension 4 or 6, except the hyperbolic one. In particular, we prove that in a BCV-space there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface; then, by making use of this two-parameter representation, we characterize helicoidal surfaces which have constant mean curvature, including the minimal ones.


2011 ◽  
Vol 84 (3) ◽  
pp. 362-371
Author(s):  
JUNCHEOL PYO ◽  
KEOMKYO SEO

AbstractFor a compact spacelike constant mean curvature surface with nonempty boundary in the three-dimensional Lorentz–Minkowski space, we introduce a rotation index of the lines of curvature at the boundary umbilical point, which was developed by Choe [‘Sufficient conditions for constant mean curvature surfaces to be round’, Math. Ann.323(1) (2002), 143–156]. Using the concept of the rotation index at the interior and boundary umbilical points and applying the Poincaré–Hopf index formula, we prove that a compact immersed spacelike disk type capillary surface with less than four vertices in a domain of $\Bbb L^3$ bounded by (spacelike or timelike) totally umbilical surfaces is part of a (spacelike) plane or a hyperbolic plane. Moreover, we prove that the only immersed spacelike disk type capillary surface inside a de Sitter surface in $\Bbb L^3$ is part of (spacelike) plane or a hyperbolic plane.


Author(s):  
William H. Meeks ◽  
Pablo Mira ◽  
Joaquín Pérez ◽  
Antonio Ros

Abstract We prove that two spheres of the same constant mean curvature in an arbitrary homogeneous three-manifold only differ by an ambient isometry, and we determine the values of the mean curvature for which such spheres exist. This gives a complete classification of immersed constant mean curvature spheres in three-dimensional homogeneous manifolds.


2019 ◽  
Vol 163 (1-2) ◽  
pp. 279-290
Author(s):  
Fidelis Bittencourt ◽  
Pedro Fusieger ◽  
Eduardo R. Longa ◽  
Jaime Ripoll

2015 ◽  
Vol 26 (02) ◽  
pp. 1550014 ◽  
Author(s):  
Uğur Dursun ◽  
Rüya Yeğin

We study submanifolds of hyperbolic spaces with finite type hyperbolic Gauss map. First, we classify the hyperbolic submanifolds with 1-type hyperbolic Gauss map. Then we prove that a non-totally umbilical hypersurface Mn with nonzero constant mean curvature in a hyperbolic space [Formula: see text] has 2-type hyperbolic Gauss map if and only if M has constant scalar curvature. We also classify surfaces with constant mean curvature in the hyperbolic space [Formula: see text] having 2-type hyperbolic Gauss map. Moreover we show that a horohypersphere in [Formula: see text] has biharmonic hyperbolic Gauss map.


1992 ◽  
Vol 34 (3) ◽  
pp. 355-359 ◽  
Author(s):  
Christos Baikoussis ◽  
David E. Blair

Let M2 be a (connected) surface in Euclidean 3-space E3, and let G:M2→S2(1) ⊂ E3 be its Gauss map. Then, according to a theorem of E. A. Ruh and J. Vilms [3], M2 is a surface of constant mean curvature if and only if, as a map from M2 to S2(1), G is harmonic, or equivalently, if and only ifwhere δ is the Laplace operator on M2 corresponding to the induced metric on M2 from E3 and where G is seen as a map from M2to E3. A special case of (1.1) is given byi.e., the case where the Gauss map G:M2→E3 is an eigenfunction of the Laplacian δ on M2.


Sign in / Sign up

Export Citation Format

Share Document