ISOTHERMAL QUANTUM DYNAMICS: NOSÉ–HOOVER DYNAMICS FOR COHERENT STATES

2003 ◽  
Vol 17 (28) ◽  
pp. 5449-5452 ◽  
Author(s):  
D. MENTRUP ◽  
J. SCHNACK

The method of Nosé and Hoover1,2 to create canonically distributed positions and momenta in classical molecular dynamics simulations is frequently used. Hamilton's equations of motion are supplemented by time-dependent pseudofriction terms that convert the microcanonical isoenergetic time evolution into a canonical isothermal time evolution, thus permitting the calculation of canonical ensemble averages by time averaging. We show that for one quantum particle in an external harmonic oscillator, the equations of motion in terms of coherent states can easily be modified in an analogous manner to mimic the coupling of the system to a thermal bath and create a quantum canonical ensemble.3 The method is generalised to a system of two identical quantum particles. In the resulting equations of motion, one obtains an additional attractive term for bosons and a repulsive term for fermions in the dynamics of the pseudofriction coefficients, leading to a correctly sampled thermal weight.

2011 ◽  
Vol 84 (3) ◽  
Author(s):  
Gastón García-Calderón ◽  
Luis Guillermo Mendoza-Luna

2021 ◽  
Vol 26 (4) ◽  
pp. 68-75
Author(s):  
A. V. Gorokhov ◽  
G. I. Eremenko

A system of two dipole-dipole interacting two-level elements (qubits) in external fields is considered. It is shown that using the coherent states (CS) of the dynamic symmetry group of the SU(2)SU(2) system, the time evolution can be reduced to the "classical" dynamics of the complex parameters of the CS. The trajectories of the CS are constructed and the time dependences of the probability of finding qubits at the upper levels are calculated.


2016 ◽  
Vol 12 (12) ◽  
pp. 5688-5697 ◽  
Author(s):  
Fabien Brieuc ◽  
Yael Bronstein ◽  
Hichem Dammak ◽  
Philippe Depondt ◽  
Fabio Finocchi ◽  
...  

2020 ◽  
Author(s):  
Isaiah Sumner ◽  
Hannah Anthony

The time-dependent Schrödinger equation can be rewritten so that its interpretation is no longer probabilistic. Two well-known and related reformulations are Bohmian mechanics and quantum hydrodynamics. In these formulations, quantum particles follow real, deterministic trajectories influenced by a quantum force. Generally, trajectory methods are not applied to electronic structure calculations, since they predict that the electrons in a ground state, real, molecular wavefunction are motionless. However, a spin-dependent momentum can be recovered from the non-relativistic limit of the Dirac equation. Therefore, we developed new, spin-dependent equations of motion for the quantum hydrodynamics of electrons in molecular orbitals. The equations are based on a Lagrange multiplier, which constrains each electron to an isosurface of its molecular orbital, as required by the spin-dependent momentum. Both the momentum and the Lagrange multiplier provide a unique perspective on the properties of electrons in molecules.


2021 ◽  
Author(s):  
Xinyang Li ◽  
Pengfei Huo

<div>We use the ab-initio ring polymer molecular dynamics (RPMD) approach to investigate tunneling controlled reactions in methylhydroxycarbene. Nuclear tunneling effects enable molecules to overcome the barriers which can not be overcome classically. Under low-temperature conditions, intrinsic quantum tunneling effects canfacilitate the chemical reaction in a pathway that is neither favored thermodynamically nor kinetically. This</div><div>behavior is referred to as the tunneling controlled chemical reaction and regarded as the third paradigm of chemical</div><div>reaction controls. In this work, we use the ab-initio RPMD approach to incorporate the tunneling effects in our quantum dynamics simulations. The reaction kinetics of two competitive reaction pathways at various temperatures are investigated with the Kohn-Sham density functional theory (KS-DFT) on-the-fly molecular dynamics simulations and the ring polymer quantization of the nuclei. The reaction rate constants obtained here agree extremely well with the experimentally measured rates. We demonstrate the feasibility of using ab-initio RPMD rate calculations in a realistic molecular system, and provide an interesting and important example for future investigations on reaction mechanisms dominated by quantum tunneling effects.</div>


Sign in / Sign up

Export Citation Format

Share Document