SURFACE MORPHOLOGY AND MICROSTRUCTURE OF DIRECT CURRENT SPUTTERING GROWTH OF BUFFER LAYERS FOR YBCO COATED CONDUCTOR

2007 ◽  
Vol 21 (18n19) ◽  
pp. 3348-3351
Author(s):  
J. YANG ◽  
H. Z. LIU ◽  
H. ZHANG ◽  
F. QU ◽  
Q. ZHOU ◽  
...  

A composite buffer of CeO 2/ YSZ / Y 2 O 3 was investigated on the biaxially textured NiW long tape for YBCO coated conductor with magnetron sputtering technique. Every layer's surface morphology was observed by scanning electron microscopy. The seed layer Y 2 O 3 film was full coverage of the NiW substrate. The cap layer CeO 2 showed a smooth and crack-free surface and good crystallinity. The roughness of CeO 2 surface was measured by atom force microscopy. The transmission electron microscopy was used to analyze the cross-section of buffer layers and YBCO layer.

2000 ◽  
Vol 07 (05n06) ◽  
pp. 565-570 ◽  
Author(s):  
CHANGWU HU ◽  
DAVID J. SMITH ◽  
R. B. DOAK ◽  
I. S. T. TSONG

The growth of GaN buffer layers of thickness 10–25 nm directly on 6H–SiC (0001) substrates was studied using low energy electron microscopy, atomic force microscopy and cross-sectional transmission electron microscopy. The Ga flux was supplied by an evaporative source, while the NH3 flux came from a seeded beam supersonic jet source. By monitoring the growth in situ and by suitably adjusting the Ga/NH 3 flux ratio, smooth basal-plane-oriented GaN layers were grown on hydrogen-etched SiC substrates at temperatures in the range of 600–700°C. The growth proceeds via nucleation of small flat islands at the step edges of the 6H–SiC (0001) substrate surface. The islands increase in size with a lateral-to-vertical growth ratio of ~10 and eventually coalesce into a quasicontinuous layer. A highly defective substrate surface was found to be detrimental to the growth of flat buffer layers.


2002 ◽  
Vol 722 ◽  
Author(s):  
David J. Smith ◽  
Daming Huang ◽  
Michael A Reshchikov ◽  
Feng Yun ◽  
T. King ◽  
...  

AbstractWe have investigated a novel approach for improving GaN crystal quality by utilizing a stack of quantum dots (QDs) in GaN grown on sapphire substrates by molecular beam epitaxy. The GaN films were grown on GaN/AlN buffer layers containing multiple QDs and characterized using x-ray diffraction, photoluminescence, atomic force microscopy, and transmission electron microscopy. The density of the dislocations in the films was determined by defect delineation wet chemical etching and atomic force microscopy. It was found that the insertion of a set of multiple GaN QD layers in the buffer layer effectively reduced the density of the dislocations in the epitaxial layers. As compared to a density of ∼1010cm-2in typical GaN films grown on AlN buffer layers, a density of ∼3×107cm-2was demonstrated in GaN films grown with the QD layers. Transmission electron microscopy observations confirmed termination of threading dislocations by the QD layers.


2004 ◽  
Vol 19 (6) ◽  
pp. 1869-1875 ◽  
Author(s):  
H. Wang ◽  
S.R. Foltyn ◽  
P.N. Arendt ◽  
Q.X. Jia ◽  
J.L. MacManus-Driscoll ◽  
...  

A thin layer of SrTiO3 (STO) has successfully been used as a buffer layer to grow high-quality superconducting YBa2Cu3O7-δ(YBCO) thick films on polycrystalline metal substrates with a biaxially oriented MgO template produced by ion-beam-assisted deposition. Using this architecture, 1.5-μm-thick YBCO films with an in-plane mosaic spread in the range of 2.5° to 3.5° in full width at half-maximum and critical current density over 2 × 10 6A/cm2 in self-field at 75 K have routinely been achieved. It is interesting to note that the pulsed laser deposition growth conditions of SrTiO3 buffer layers, such as growth temperature and oxygen pressure, have strong effects on the superconducting properties of YBCO. Detailed studies using transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used to explore the microstructures of STO deposited at different conditions and to understand further their effects on the growth and properties of YBCO films.


Author(s):  
R H Dixon ◽  
P Kidd ◽  
P J Goodhew

Thick relaxed InGaAs layers grown epitaxially on GaAs are potentially useful substrates for growing high indium percentage strained layers. It is important that these relaxed layers are defect free and have a good surface morphology for the subsequent growth of device structures.3μm relaxed layers of InxGa1-xAs were grown on semi - insulating GaAs substrates by Molecular Beam Epitaxy (MBE), where the indium composition ranged from x=0.1 to 1.0. The interface, bulk and surface of the layers have been examined in planar view and cross-section by Transmission Electron Microscopy (TEM). The surface morphologies have been characterised by Scanning Electron Microscopy (SEM), and the bulk lattice perfection of the layers assessed using Double Crystal X-ray Diffraction (DCXRD).The surface morphology has been found to correlate with the growth conditions, with the type of defects grown-in to the layer (e.g. stacking faults, microtwins), and with the nature and density of dislocations in the interface.


2017 ◽  
Vol 68 (11) ◽  
pp. 2700-2703 ◽  
Author(s):  
Kamel Earar ◽  
Vasile Iulian Antoniac ◽  
Sorana Baciu ◽  
Simion Bran ◽  
Florin Onisor ◽  
...  

This study examined and compared surface of human dentine after acidic etching with hydrogen peroxide, phosphoric acid liquid and gel. Surface demineralization of dentin is necessary for a strong bond of adhesive at dental surface. Split human teeth were used. After application of mentioned substances at dentin level measures of the contact angle and surface morphology were employed. Surface morphology was analyzed with the help of scanning electron microscopy and atomic force microscopy. Liquid phosphoric acid yielded highest demineralization showing better hydrophobicity than the rest, thus having more contact surface. Surface roughness are less evident and formed surface micropores of 4 �m remained open after wash and air dry providing better adhesive canalicular penetration and subsequent bond.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2849
Author(s):  
Marcin Jan Dośpiał

This paper presents domain and structure studies of bonded magnets made from nanocrystalline Nd-(Fe, Co)-B powder. The structure studies were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Mössbauer spectroscopy and X-ray diffractometry. On the basis of performed qualitative and quantitative phase composition studies, it was found that investigated alloy was mainly composed of Nd2(Fe-Co)14B hard magnetic phase (98 vol%) and a small amount of Nd1.1Fe4B4 paramagnetic phase (2 vol%). The best fit of grain size distribution was achieved for the lognormal function. The mean grain size determined from transmission electron microscopy (TEM) images on the basis of grain size distribution and diffraction pattern using the Bragg equation was about ≈130 nm. HRTEM images showed that over-stoichiometric Nd was mainly distributed on the grain boundaries as a thin amorphous border of 2 nm in width. The domain structure was investigated using a scanning electron microscope and metallographic light microscope, respectively, by Bitter and Kerr methods, and by magnetic force microscopy. Domain structure studies revealed that the observed domain structure had a labyrinth shape, which is typically observed in magnets, where strong exchange interactions between grains are present. The analysis of the domain structure in different states of magnetization revealed the dynamics of the reversal magnetization process.


Sign in / Sign up

Export Citation Format

Share Document