DYNAMIC ANALYSIS OF HEAD IMPACT TEST OF PASSENGER AIR-BAG MODULE ASSEMBLY OF VEHICLE USING FEM

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1699-1704 ◽  
Author(s):  
MOON SAENG KIM ◽  
JOON HO LEE ◽  
BYUNG YOUNG MOON

In this study, dynamic impact analysis for the passenger air-bag(PAB) module has been carried out by using FEM to predict the dynamic characteristics of vehicle ride safety against head impact. To carry out the dynamic analysis of head impact test of the PAB module assembly of automobile, the FE models, which are consist of instrument panel, PAB Module, and head part, are combined to the whole module system. Then, impact analysis is carried out by the explicit solution procedure with assembled FE model. And the dynamic characteristics of the head impact are observed to prove the effectiveness of the proposed method by comparing with the experimental results. As a result, the better optimized impact characteristics are proposed by changing the tie bracket's width and thickness of module. The proposed approach of impact analysis will provides an efficient vehicle to improve the design quality and reduce the design period and cost.

2014 ◽  
Vol 980 ◽  
pp. 263-268 ◽  
Author(s):  
Nur Akmal Haniffah ◽  
Mohamad Fazrul Zakaria ◽  
Tan Kean Sheng

This study presents the automotive instrument panel (IP) design in order to improve the quality, cost, and safety of the existing design. A few conceptual designs were generated based on safety aspect and ergonomic design. The most suitable design was selected using concepts scoring. The IP head impact simulation was conducted using finite element analysis (FEA) to predict the head injury criterion (HIC) value of the front passenger in vehicle according to ECE-R21 regulation. The finite element (FE) model, which consist of upper IP, lower IP, carrier structure and head-form, was built-up to carry out head impact analysis of the IP assembly. The optimum IP design was proposed by analysis of different materials, which are 20% talc filled rubber modified polypropylene (PP+EPDM-TD20), acrylonitrile butadiene styrene (ABS) polymer, and polypropylene (PP) copolymer. The HIC value for all IP was compared using simulation result and theoretical calculation. The lowest HIC value will reduce the head occupant injury. In this study, only the raw material cost was considered in cost evaluation. The IP from ABS polymer performed the lowest HIC value, which were 179.7 but very costly compare to other materials.


2016 ◽  
Vol 715 ◽  
pp. 186-191 ◽  
Author(s):  
Chih Hsing Liu ◽  
Yu Cheng Lai ◽  
Chen Hua Chiu ◽  
Meng Hsien Lin

This study presents the numerical and experimental interior head impact analysis of automotive instrument panel according to the United Nations Economic Commission for Europe Regulation 21 (ECE R21). To minimize the possible injury risk for unrestrained front seat passengers due to the interior head impact with the instrument panel, the panel design needs to meet the ECE R21 standard which defines a pendulum-type head form as the impactor. The measured acceleration response of the head form should not exceed 80g continuously for more than 3ms. Motivated by the need to develop a simulation-based technique to evaluate the design of the instrument panel, a numerical model based on the explicit dynamic finite element analysis (FEA) by using the commercial FEA solver, LS-DYNA, is developed. To minimize the experimental cost, a gravity-based impactor with a smaller impact speed is develop as the test apparatus for verification purpose. The simulated results agree well with the experimental data; the average accuracy for the maximum value of impact acceleration at the head form is 95.4%. After the verification, the standard test conditions (with higher impact speed) are performed to evaluate the design. The outcome of this study can provide an efficient and cost-effective method to predict and improve the design of the instrument panel for interior head impact protection.


Vibration ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 151-174
Author(s):  
André F. S. Rodrigues ◽  
Zuzana Dimitrovová

In this paper, the three-layer model of ballasted railway track with discrete supports is analyzed to access its applicability. The model is referred as the discrete support model and abbreviated by DSM. For calibration, a 3D finite element (FE) model is created and validated by experiments. Formulas available in the literature are analyzed and new formulas for identifying parameters of the DSM are derived and validated over the range of typical track properties. These formulas are determined by fitting the results of the DSM to the 3D FE model using metaheuristic optimization. In addition, the range of applicability of the DSM is established. The new formulas are presented as a simple computational engineering tool, allowing one to calculate all the data needed for the DSM by adopting the geometrical and basic mechanical properties of the track. It is demonstrated that the currently available formulas have to be adapted to include inertial effects of the dynamically activated part of the foundation and that the contribution of the shear stiffness, being determined by ballast and foundation properties, is essential. Based on this conclusion, all similar models that neglect the shear resistance of the model and inertial properties of the foundation are unable to reproduce the deflection shape of the rail in a general way.


Author(s):  
Takuzo Iwatsubo ◽  
Shiro Arii ◽  
Kei Hasegawa ◽  
Koki Shiohata

Abstract This paper presents a method for analyzing the dynamic characteristics of driving systems consisting of multiple belts and pulleys. First, the algorithm which derives the linear equations of motion of arbitrary multi-coupled belt systems is shown. Secondly, by using the algorithm, the computer program which formulates the equations of motion and calculates the transient responses of the belt system is presented. The fundamental idea of the algorithm is as follows: Complicated belt systems consisting of multiple belts and pulleys are regarded as combinations of simple belt systems consisting of a single belt and some pulleys. Therefore, the equations of motion of the belt systems can be derived by the superposition of the equations of motion of the simple belt systems. By means of this method, the responses of arbitrary multi-coupled belt systems can be calculated. Finally, to verify the usefulness of this method, the simulation results are compared with the experimental results.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ying-Chung Chen ◽  
Xu Feng Cheng ◽  
Siu-Tong Choi

Purpose This study aims to study the dynamic characteristics of a helical geared rotor-bearing system with composite material rotating shafts. Design/methodology/approach A finite element model of a helical geared rotor-bearing system with composite material rotating shafts is developed, in which the rotating shafts of the system are composed of composite material and modeled as Timoshenko beam; a rigid mass is used to represent the gear and their gyroscopic effect is taken into account; bearings are modeled as linear spring-damper; and the equations of motion are obtained by applying Lagrange’s equation. Natural frequencies, mode description, lateral responses, axial responses, lamination angles, lamination numbers, gear mesh stiffness and bearing damping coefficients are investigated. Findings The desired mechanical properties could be constructed using different lamination numbers and fiber included angles by composite rotating shafts. The frequency of the lateral module decreases as the included angle of the fibers and the principal shaft of the composite material rotating shaft increase. Because of the gear mesh stiffness increase, the resonance frequency of the coupling module of the system decreases, the lateral module is not influenced and the steady-state response decreases. The amplitude of the steady-state lateral and axial responses gradually decreases as the bearing damping coefficient increases. Practical implications The model of a helical geared rotor-bearing system with composite material rotating shafts is established in this paper. The dynamic characteristics of a helical geared rotor-bearing system with composite rotating shafts are investigated. The numerical results of this study can be used as a reference for subsequent personnel research. Originality/value The dynamic characteristics of the geared rotor-bearing system had been reported in some literature. However, the dynamic analysis of a helical geared rotor-bearing system with composite material rotating shafts is still rarely investigated. This paper shows some novel results of lateral and axial response results obtained by different lamination angles and different lamination numbers. In the future, it makes valuable contributions for further development of dynamic analysis of a helical geared rotor-bearing system with composite material rotating shafts.


Author(s):  
Jun Shen ◽  
Yunlong Wu ◽  
Heng Peng ◽  
Yinghua Liu

Coal gasification is a key technology for clean coal conversion with high efficiency. During the past decade, more than twenty Shell Key Gasification Equipments (SKGE) used in the Shell Coal Gasification Process (SCGP) have been built in coal-to-chemicals industry in China. SKGE is composed of Gasifier and Syngas cooler which are connected by Transfer duct. The support skirt of the Gasifier base is fixed, while the Syngas cooler side is supported by a constant hanger (floating support). In this paper, a FE model of the largest 2000-ton SKGE system in China is established by using ANSYS. The global dynamic response under the seismic load is simulated. In order to verify the correction of the calculation, the results are also compared with that by using ABAQUS. Compared to the traditional static analysis, it can be found that the deformation and stress distribution, the force and moment on several specified cross sections of SKGE change over time under seismic load based on the transient dynamic analysis. As the result of the seismic analysis is the prerequisite and foundation for accurate calculation of each key part (e.g. connection between Transfer duct and Gas reversal chamber), the seismic analysis is one of the most important analyses in the Gasification design, which will ensure the essential safety of SKGE system.


Sign in / Sign up

Export Citation Format

Share Document