Identifying non-pseudo-alternating knots by using the free factor property of minimal genus Seifert surfaces
Pseudo-alternating knots and links are defined constructively via their Seifert surfaces. By performing Murasugi sums of primitive flat surfaces, such a knot or link is obtained as the boundary of the resulting surface. Conversely, it is hard to determine whether a given knot or link is pseudo-alternating or not. A major difficulty is the lack of criteria to recognize whether a given Seifert surface is decomposable as a Murasugi sum. In this paper, we propose a new idea to identify non-pseudo-alternating knots. Combining with the uniqueness of minimal genus Seifert surface obtained through sutured manifold theory, we demonstrate that two infinite classes of pretzel knots are not pseudo-alternating.