scholarly journals Moduli spaces for Lamé functions and Abelian differentials of the second kind

Author(s):  
Alexandre Eremenko ◽  
Andrei Gabrielov ◽  
Gabriele Mondello ◽  
Dmitri Panov

The topology of the moduli space for Lamé functions of degree [Formula: see text] is determined: this is a Riemann surface which consists of two connected components when [Formula: see text]; we find the Euler characteristics and genera of these components. As a corollary we prove a conjecture of Maier on degrees of Cohn’s polynomials. These results are obtained with the help of a geometric description of these Riemann surfaces, as quotients of the moduli spaces for certain singular flat triangles. An application is given to the study of metrics of constant positive curvature with one conic singularity with the angle [Formula: see text] on a torus. We show that the degeneration locus of such metrics is a union of smooth analytic curves and we enumerate these curves.

2012 ◽  
Vol 111 (1) ◽  
pp. 53 ◽  
Author(s):  
Antonio F. Costa ◽  
Milagros Izquierdo

Let $g$ be an integer $\geq3$ and let $B_{g}=\{X\in\mathcal{M}_{g}: \mathrm{Aut}(X)\neq Id\}$ be the branch locus of $M_{g}$, where $M_{g}$ denotes the moduli space of compact Riemann surfaces of genus $g$. The structure of $B_{g}$ is of substantial interest because $B_{g}$ corresponds to the singularities of the action of the modular group on the Teichmüller space of surfaces of genus $g$ (see [14]). Kulkarni ([15], see also [13]) proved the existence of isolated points in the branch loci of the moduli spaces of Riemann surfaces. In this work we study the isolated connected components of dimension 1 in such loci. These isolated components of dimension one appear if the genus is $g=p-1$ with $p$ prime $\geq11$. We use uniformization by Fuchsian groups and the equisymmetric stratification of the branch loci.


2020 ◽  
pp. 1-23
Author(s):  
MICHELE BOLOGNESI ◽  
NÉSTOR FERNÁNDEZ VARGAS

Abstract Let C be a hyperelliptic curve of genus $g \geq 3$ . In this paper, we give a new geometric description of the theta map for moduli spaces of rank 2 semistable vector bundles on C with trivial determinant. In order to do this, we describe a fibration of (a birational model of) the moduli space, whose fibers are GIT quotients $(\mathbb {P}^1)^{2g}//\text {PGL(2)}$ . Then, we identify the restriction of the theta map to these GIT quotients with some explicit degree 2 osculating projection. As a corollary of this construction, we obtain a birational inclusion of a fibration in Kummer $(g-1)$ -varieties over $\mathbb {P}^g$ inside the ramification locus of the theta map.


2019 ◽  
Vol 72 (5) ◽  
pp. 1111-1187
Author(s):  
Xu Shen

AbstractWe enlarge the class of Rapoport–Zink spaces of Hodge type by modifying the centers of the associated $p$-adic reductive groups. Such obtained Rapoport–Zink spaces are said to be of abelian type. The class of Rapoport–Zink spaces of abelian type is strictly larger than the class of Rapoport–Zink spaces of Hodge type, but the two type spaces are closely related as having isomorphic connected components. The rigid analytic generic fibers of Rapoport–Zink spaces of abelian type can be viewed as moduli spaces of local $G$-shtukas in mixed characteristic in the sense of Scholze.We prove that Shimura varieties of abelian type can be uniformized by the associated Rapoport–Zink spaces of abelian type. We construct and study the Ekedahl–Oort stratifications for the special fibers of Rapoport–Zink spaces of abelian type. As an application, we deduce a Rapoport–Zink type uniformization for the supersingular locus of the moduli space of polarized K3 surfaces in mixed characteristic. Moreover, we show that the Artin invariants of supersingular K3 surfaces are related to some purely local invariants.


2001 ◽  
Vol 12 (03) ◽  
pp. 339-371
Author(s):  
MARIKO MUKAI-HIDANO ◽  
YOSHIHIRO OHNITA

This paper aims to investigate the geometry of the moduli spaces of harmonic maps of compact Riemann surfaces into compact Lie groups or compact symmetric spaces. The approach here is to study the gauge theoretic equations for such harmonic maps and the moduli space of their solutions. We discuss the S1-action, the hyper-presymplectic structure, the energy function, the Hitchin map, the flag transforms on the moduli space, several kinds of subspaces in the moduli space, and the relationship among them, especially the structure of the critical point subset for the energy function on the moduli space. As results, we show that every uniton solution is a critical point of the energy function on the moduli space, and moreover we give a characterization of the fixed point subset fixed by S1-action in terms of a flag transform.


2009 ◽  
Vol 20 (08) ◽  
pp. 1069-1080 ◽  
Author(s):  
JOSÉ A. BUJALANCE ◽  
ANTONIO F. COSTA ◽  
ANA M. PORTO

A Riemann surface X of genus g > 2 is elliptic-hyperelliptic if it admits a conformal involution h such that the orbit space X/〈h〉 has genus one. This elliptic-hyperelliptic involution h is unique for g > 5 [1]. In a previous article [3], we established the non-connectedness of the subspace [Formula: see text] of real elliptic-hyperelliptic algebraic curves in the moduli space [Formula: see text] of Riemann surfaces of genus g, when g is even and > 5. In this paper we improve this result and give a complete answer to the connectedness problem of the space [Formula: see text] of real elliptic-hyperelliptic surfaces of genus > 5: we show that [Formula: see text] is connected if g is odd and has exactly two connected components if g is even; in both cases the closure [Formula: see text] of [Formula: see text] in the compactified moduli space [Formula: see text] is connected.


2011 ◽  
Vol 22 (02) ◽  
pp. 223-279 ◽  
Author(s):  
ANDRÉ GAMA OLIVEIRA

Given a closed, oriented surface X of genus g ≥ 2, and a semisimple Lie group G, let [Formula: see text] be the moduli space of reductive representations of π1X in G. We determine the number of connected components of [Formula: see text], for n ≥ 4 even. In order to have a first division of connected components, we first classify real projective bundles over such a surface. Then we achieve our goal, using holomorphic methods through the theory of Higgs bundles over compact Riemann surfaces. We also show that the complement of the Hitchin component in [Formula: see text] is homotopically equivalent to [Formula: see text].


Author(s):  
Markus Reineke ◽  
Thorsten Weist

Abstract We identify certain Gromov–Witten invariants counting rational curves with given incidence and tangency conditions with the Euler characteristics of moduli spaces of point configurations in projective spaces. On the Gromov–Witten side, S. Fomin and G. Mikhalkin established a recurrence relation via tropicalization, which is realized on the moduli space side using Donaldson–Thomas invariants of subspace quivers.


2006 ◽  
Vol 08 (04) ◽  
pp. 481-534 ◽  
Author(s):  
DAVID RADNELL ◽  
ERIC SCHIPPERS

One of the basic geometric objects in conformal field theory (CFT) is the moduli space of Riemann surfaces whose n boundaries are "rigged" with analytic parametrizations. The fundamental operation is the sewing of such surfaces using the parametrizations to identify points. An alternative model is the moduli space of n-punctured Riemann surfaces together with local biholomorphic coordinates at the punctures. We refer to both of these moduli spaces as the "rigged Riemann moduli space".By generalizing to quasisymmetric boundary parametrizations, and defining rigged Teichmüller spaces in both the border and puncture pictures, we prove the following results: (1) The Teichmüller space of a genus-g surface bordered by n closed curves covers the rigged Riemann and rigged Teichmüller moduli spaces of surfaces of the same type, and induces complex manifold structures on them; (2) With this complex structure, the sewing operation is holomorphic; (3) The border and puncture pictures of the rigged moduli and rigged Teichmüller spaces are biholomorphically equivalent.These results are necessary in rigorously defining CFT (in the sense of G. Segal), as well as for the construction of CFT from vertex operator algebras.


2011 ◽  
Vol 22 (12) ◽  
pp. 1711-1719 ◽  
Author(s):  
STEPHEN D. THERIAULT

For a prime p, the gauge group of a principal U(p)-bundle over a compact, orientable Riemann surface is decomposed up to homotopy as a product of spaces, each of which is commonly known. This is used to deduce explicit computations of the homotopy groups of the moduli space of stable vector bundles through a range, answering a question of Daskalopoulos and Uhlenbeck.


2011 ◽  
Vol 147 (5) ◽  
pp. 1479-1518 ◽  
Author(s):  
Yukinobu Toda

AbstractThe moduli space of holomorphic maps from Riemann surfaces to the Grassmannian is known to have two kinds of compactifications: Kontsevich’s stable map compactification and Marian–Oprea–Pandharipande’s stable quotient compactification. Over a non-singular curve, the latter moduli space is Grothendieck’s Quot scheme. In this paper, we give the notion of ‘ ϵ-stable quotients’ for a positive real number ϵ, and show that stable maps and stable quotients are related by wall-crossing phenomena. We will also discuss Gromov–Witten type invariants associated to ϵ-stable quotients, and investigate them under wall crossing.


Sign in / Sign up

Export Citation Format

Share Document