Factorizations of finite groups by conjugate subgroups which are solvable or nilpotent
We consider factorizations of a finite group [Formula: see text] into conjugate subgroups, [Formula: see text] for [Formula: see text] and [Formula: see text], where [Formula: see text] is nilpotent or solvable. We derive an upper bound on the minimal length of a solvable conjugate factorization of a general finite group which, for a large class of groups, is linear in the non-solvable length of [Formula: see text]. We also show that every solvable group [Formula: see text] is a product of at most [Formula: see text] conjugates of a Carter subgroup [Formula: see text] of [Formula: see text], where [Formula: see text] is a positive real constant. Finally, using these results we obtain an upper bound on the minimal length of a nilpotent conjugate factorization of a general finite group.