scholarly journals Factorizations of finite groups by conjugate subgroups which are solvable or nilpotent

2017 ◽  
Vol 16 (03) ◽  
pp. 1750043
Author(s):  
Martino Garonzi ◽  
Dan Levy ◽  
Attila Maróti ◽  
Iulian I. Simion

We consider factorizations of a finite group [Formula: see text] into conjugate subgroups, [Formula: see text] for [Formula: see text] and [Formula: see text], where [Formula: see text] is nilpotent or solvable. We derive an upper bound on the minimal length of a solvable conjugate factorization of a general finite group which, for a large class of groups, is linear in the non-solvable length of [Formula: see text]. We also show that every solvable group [Formula: see text] is a product of at most [Formula: see text] conjugates of a Carter subgroup [Formula: see text] of [Formula: see text], where [Formula: see text] is a positive real constant. Finally, using these results we obtain an upper bound on the minimal length of a nilpotent conjugate factorization of a general finite group.

2006 ◽  
Vol 74 (1) ◽  
pp. 121-132 ◽  
Author(s):  
A. Abdollahi ◽  
A. Azad ◽  
A. Mohammadi Hassanabadi ◽  
M. Zarrin

This paper is an attempt to provide a partial answer to the following question put forward by Bernhard H. Neumann in 2000: “Let G be a finite group of order g and assume that however a set M of m elements and a set N of n elements of the group is chosen, at least one element of M commutes with at least one element of N. What relations between g, m, n guarantee that G is Abelian?” We find an exponential function f(m,n) such that every such group G is Abelian whenever |G| > f(m,n) and this function can be taken to be polynomial if G is not soluble. We give an upper bound in terms of m and n for the solubility length of G, if G is soluble.


1969 ◽  
Vol 9 (3-4) ◽  
pp. 467-477 ◽  
Author(s):  
J. N. Ward

Let G denote a finite group with a fixed-point-free automorphism of prime order p. Then it is known (see [3] and [8]) that G is nilpotent of class bounded by an integer k(p). From this it follows that the length of the derived series of G is also bounded. Let l(p) denote the least upper bound of the length of the derived series of a group with a fixed-point-free automorphism of order p. The results to be proved here may now be stated: Theorem 1. Let G denote a soluble group of finite order and A an abelian group of automorphisms of G. Suppose that (a) ∣G∣ is relatively prime to ∣A∣; (b) GAis nilpotent and normal inGω, for all ω ∈ A#; (c) the Sylow 2-subgroup of G is abelian; and (d) if q is a prime number andqk+ 1 divides the exponent of A for some integer k then the Sylow q-subgroup of G is abelian.


1973 ◽  
Vol 9 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Fletcher Gross

Suppose G = AB where G is a finite group and A and B are nilpotent subgroups. It is proved that the derived length of G modulo its Frattini subgroup is at most the sum of the classes of A and B. An upper bound for the derived length of G in terms of the derived lengths of A and B also is obtained.


2016 ◽  
Vol 15 (10) ◽  
pp. 1650197 ◽  
Author(s):  
Seyyed Majid Jafarian Amiri ◽  
Halimeh Madadi

For a finite group [Formula: see text], let [Formula: see text] be the maximum size of a set of pairwise noncommuting elements in [Formula: see text]. In this paper, we give an upper bound of [Formula: see text] for an arbitrary nilpotent group [Formula: see text]. As an application of this result, we give a partial answer to Question 2.8 of [A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7(2) (2000) 139–146]. Also we compute [Formula: see text] when [Formula: see text] is a Frobenius group. Finally we describe structural properties of all groups [Formula: see text] with [Formula: see text].


2005 ◽  
Vol 12 (02) ◽  
pp. 255-261 ◽  
Author(s):  
Mohammad Reza R. Moghaddam ◽  
Ali Reza Salemkar ◽  
Kazem Chiti

Gallagher (1970) and Gustafson (1973) introduced the commutativity degree of a finite group. In this paper, we define the n-nilpotency degree of finite groups for n ≥ 1, and prove some results as Lescot (1995) does for a certain class of groups. In particular, it is shown that the n-isoclinism of finite groups preserves their n-nilpotency degrees. Finally, some sharper and more general upper bound than previously known is constructed for the commutativity degree of non-abelian finite groups.


2020 ◽  
Vol 18 (1) ◽  
pp. 1742-1747
Author(s):  
Jianjun Liu ◽  
Mengling Jiang ◽  
Guiyun Chen

Abstract A subgroup H of a finite group G is called weakly pronormal in G if there exists a subgroup K of G such that G = H K G=HK and H ∩ K H\cap K is pronormal in G. In this paper, we investigate the structure of the finite groups in which some subgroups are weakly pronormal. Our results improve and generalize many known results.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


Author(s):  
Ingrid Bauer ◽  
Christian Gleissner

AbstractIn this paper the authors study quotients of the product of elliptic curves by a rigid diagonal action of a finite group G. It is shown that only for $$G = {{\,\mathrm{He}\,}}(3), {\mathbb {Z}}_3^2$$ G = He ( 3 ) , Z 3 2 , and only for dimension $$\ge 4$$ ≥ 4 such an action can be free. A complete classification of the singular quotients in dimension 3 and the smooth quotients in dimension 4 is given. For the other finite groups a strong structure theorem for rigid quotients is proven.


2021 ◽  
Vol 58 (2) ◽  
pp. 147-156
Author(s):  
Qingjun Kong ◽  
Xiuyun Guo

We introduce a new subgroup embedding property in a finite group called s∗-semipermutability. Suppose that G is a finite group and H is a subgroup of G. H is said to be s∗-semipermutable in G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K is s-semipermutable in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1 < |D| < |P | and study the structure of G under the assumption that every subgroup H of P with |H | = |D| is s∗-semipermutable in G. Some recent results are generalized and unified.


Sign in / Sign up

Export Citation Format

Share Document