Cylindrically symmetric unimodular f(R) black holes

Author(s):  
Hüseyi̇n Aydın ◽  
Meli̇s Ulu Dog̃ru

In this paper, we examine massless scalar field by using unimodular [Formula: see text] theory. It is taken into account unimodular and cylindrically symmetric spacetime which provides convenience in researching black hole. The field equations in unimodular [Formula: see text] theory for given spacetime with massless scalar field and additional Bianchi identities are solved. Cylindrically symmetric anti-de Sitter (AdS)–Schwarzschild-like and AdS–Reissner–Nordström-like black hole spacetimes are achieved. Equations of motion are derived by using Hamiltonian. Orbits of massless test particles are depicted. Obtained line element asymptotically converges to dS/AdS spacetime. Weak and strong energy conditions of the massless scalar field are obtained with Raychaudhuri equations in unimodular [Formula: see text] theory. Also, stiff fluid interpretation of scalar field is reviewed.

2015 ◽  
Vol 30 (11) ◽  
pp. 1550057 ◽  
Author(s):  
Sharmanthie Fernando

In this paper, we have studied a black hole in de Sitter space which has a conformally coupled scalar field in the background. This black hole is also known as the MTZ black hole. We have obtained exact values for the quasi-normal mode (QNM) frequencies under massless scalar field perturbations. We have demonstrated that when the black hole is near-extremal, that the wave equation for the massless scalar field simplifies to a Schrödinger type equation with the well-known Pöschl–Teller potential. We have also used sixth-order WKB approximation to compute QNM frequencies to compare with exact values obtained via the Pöschl–Teller method for comparison. As an application, we have obtained the area spectrum using modified Hods approach and show that it is equally spaced.


2007 ◽  
Vol 22 (24) ◽  
pp. 4451-4465 ◽  
Author(s):  
MOLIN LIU ◽  
HONGYA LIU ◽  
CHUNXIAO WANG ◽  
YONGLI PING

The Nariai black hole, whose two horizons are lying close to each other, is an extreme and important case in the research of black hole. In this paper we study the evolution of a massless scalar field scattered around in 5D Schwarzschild–de Sitter black string space. Using the method shown by Brevik and Simonsen (2001) we solve the scalar field equation as a boundary value problem, where real boundary condition is employed. Then with convenient replacement of the 5D continuous potential by square barrier, the reflection and transmission coefficients (R, T) are obtained. At last, we also compare the coefficients with the usual 4D counterpart.


The internal structure of a charged spherical black hole is still a topic of debate. In a non-rotating but aspherical gravitational collapse to form a spherical charged black hole, the backscattered gravitational wave tails enter the black hole and are blueshifted at the Cauchy horizon. This has a catastrophic effect if combined with an outflux crossing the Cauchy horizon: a singularity develops at the Cauchy horizon and the effective mass inflates. Recently, a numerical study of a massless scalar field in the Reissner-Nordström background suggested that a spacelike singularity may form before the Cauchy horizon forms. We will show that there exists an approximate analytic solution of the scalar-field equations which allows the mass-inflation singularity at the Cauchy horizon to exist. In particular, we see no evidence that the Cauchy horizon is preceded by a spacelike singularity.


2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641022 ◽  
Author(s):  
K. A. Bronnikov ◽  
V. G. Krechet

We seek wormholes among rotating cylindrically symmetric configurations in general relativity. Exact wormhole solutions are presented with such sources of gravity as a massless scalar field, a cosmological constant, and a scalar field with an exponential potential. However, none of these solutions are asymptotically flat, which excludes the existence of wormhole entrances as local objects in our Universe. To overcome this difficulty, we try to build configurations with flat asymptotic regions using the cut-and-paste procedure: on both sides of the throat, a wormhole solution is matched to a properly chosen region of flat space-time at some surfaces [Formula: see text] and [Formula: see text]. It is shown, however, that if the source of gravity in the throat region is a scalar field with an arbitrary potential, then one or both thin shells appearing on [Formula: see text] and [Formula: see text] inevitably violate the null energy condition. Thus, although rotating wormhole solutions are easily found without exotic matter, such matter is still necessary for obtaining asymptotic flatness.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750096
Author(s):  
W. Barreto ◽  
H. P. de Oliveira ◽  
B. Rodriguez-Mueller

Frequently in Physics, insights and conclusions can be drawn from simple, idealized models. The discovery of critical behavior in the gravitational collapse of a massless scalar field leads to the simulation of binary black holes, from its coalescence to merging and ringdown. We refined a toy model to explore black hole formation as these events unfold to revisit the instability of a gravitational kink. We confirmed a conjecture related to a mass gap for critical behavior at the threshold of black hole formation. We find a critical exponent twice the standard value. Surprisingly, this larger critical exponent is also present in the multiple critical behavior for the black hole formation from a massless scalar field in asymptotically anti-de Sitter spacetimes. What is the meaning of this mass gap? Does it have physical relevance?


2015 ◽  
Vol 24 (14) ◽  
pp. 1550104 ◽  
Author(s):  
Sharmanthie Fernando

The purpose of this paper is to study quasinormal modes (QNMs) of a regular black hole with a cosmological constant due to scalar perturbations. A detailed study of QNMs frequencies for the massless scalar field was done by varying the parameters of the theory such as mass, magnetic charge, cosmological constant and the spherical harmonic index. We have employed the sixth-order WKB approximation to compute the QNMs frequencies. We have also proved analytically that the [Formula: see text] mode for the massless field reaches a constant value at late times. We have approximated the near-extreme regular-de Sitter (dS) black hole potential with the Pöschl–Teller potential to obtain exact frequencies. The null geodesics of the regular-de Sitter black hole is employed to describe the QNMs frequencies at the eikonal limit ([Formula: see text]).


2005 ◽  
Vol 14 (06) ◽  
pp. 1049-1061 ◽  
Author(s):  
R. CHAN ◽  
M. F. A. DA SILVA ◽  
J. F. VILLAS DA ROCHA ◽  
ANZHONG WANG

All the (2+1)-dimensional circularly symmetric solutions with kinematic self-similarity of the second kind to the Einstein-massless-scalar field equations are found and their local and global properties are studied. It is found that some of them represent gravitational collapse of a massless scalar field, in which black holes are always formed.


2014 ◽  
Vol 23 (11) ◽  
pp. 1450086 ◽  
Author(s):  
J. B. Formiga ◽  
T. S. Almeida

The most general solution of the Einstein field equations coupled with a massless scalar field is known as Wyman's solution. This solution is also present in the Brans–Dicke theory and, due to its importance, it has been studied in detail by many authors. However, this solutions has not been studied from the perspective of a possible wormhole. In this paper, we perform a detailed analysis of this issue. It turns out that there is a wormhole. Although we prove that the so-called throat cannot be traversed by human beings, it can be traversed by particles and bodies that can last long enough.


Sign in / Sign up

Export Citation Format

Share Document