On Annihilator Ideals of Pseudo-differential Operator Rings

2015 ◽  
Vol 22 (04) ◽  
pp. 607-620 ◽  
Author(s):  
R. Manaviyat ◽  
A. Moussavi

Let R be a ring with a derivation δ and R((x-1; δ)) denote the pseudo-differential operator ring over R. We study the relations between the set of annihilators in R and the set of annihilators in R((x-1; δ)). Among applications, it is shown that for an Armendariz ring R of pseudo-differential operator type, the ring R((x-1; δ)) is Baer (resp., quasi-Baer, PP, right zip) if and only if R is a Baer (resp., quasi-Baer, PP, right zip) ring. For a δ-weakly rigid ring R, R((x-1; δ)) is a left p.q.-Baer ring if and only if R is left p.q.-Baer and every countable subset of left semicentral idempotents of R has a generalized countable join in R.

2018 ◽  
Vol 17 (04) ◽  
pp. 1850061 ◽  
Author(s):  
S. Karimi ◽  
Sh. Sahebi ◽  
M. Habibi

For a ring [Formula: see text] with a derivation [Formula: see text], we determine the Jacobson radical of the pseudo-differential operator ring [Formula: see text] for a large class of rings with a [Formula: see text]-condition. Various types of examples of these rings are provided.


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2457-2469
Author(s):  
Akhilesh Prasad ◽  
S.K. Verma

In this article, weintroduce a new index transform associated with the cone function Pi ??-1/2 (2?x), named as Mehler-Fock-Clifford transform and study its some basic properties. Convolution and translation operators are defined and obtained their estimates under Lp(I, x-1/2 dx) norm. The test function spaces G? and F? are introduced and discussed the continuity of the differential operator and MFC-transform on these spaces. Moreover, the pseudo-differential operator (p.d.o.) involving MFC-transform is defined and studied its continuity between G? and F?.


2016 ◽  
Vol Volume 23 - 2016 - Special... ◽  
Author(s):  
Abdelwaheb Ifa ◽  
Michel Rouleux

International audience We revisit in this Note the well known Bohr-Sommerfeld quantization rule (BS) for a 1-D Pseudo-differential self-adjoint Hamiltonian within the algebraic and microlocal framework of Helffer and Sjöstrand; BS holds precisely when the Gram matrix consisting of scalar products of some WKB solutions with respect to the " flux norm " is not invertible. Dans le cadre algébrique et microlocal élaboré par Helffer et Sjöstrand, on propose une ré-écriture de la règle de quantification de Bohr-Sommerfeld pour un opérateur auto-adjoint h-Pseudo-différentiel 1-D; elle s'exprime par la non-inversibilité de la matrice de Gram d'un couple de solutions WKB dans une base convenable, pour le produit scalaire associé à la " norme de flux " .


Sign in / Sign up

Export Citation Format

Share Document