scholarly journals Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals

Author(s):  
F. Andrade da Silva ◽  
M. Federson ◽  
E. Toon

In this paper, we investigate the existence and uniqueness of a solution for a linear Volterra-Stieltjes integral equation of the second kind, as well as for a homogeneous and a nonhomogeneous linear dynamic equations on time scales, whose integral forms contain Perron [Formula: see text]-integrals defined in Banach spaces. We also provide a variation-of-constant formula for a nonhomogeneous linear dynamic equations on time scales and we establish results on controllability for linear dynamic equations. Since we work in the framework of Perron [Formula: see text]-integrals, we can handle functions not only having many discontinuities, but also being highly oscillating. Our results require weaker conditions than those in the literature. We include some examples to illustrate our main results.

2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Yongkun Li ◽  
Chao Wang

We first introduce the concept of admitting an exponential dichotomy to a class of linear dynamic equations on time scales and study the existence and uniqueness of almost periodic solution and its expression form to this class of linear dynamic equations on time scales. Then, as an application, using these concepts and results, we establish sufficient conditions for the existence and exponential stability of almost periodic solution to a class of Hopfield neural networks with delays. Finally, two examples and numerical simulations given to illustrate our results are plausible and meaningful.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3593-3597
Author(s):  
Ravindra Bisht

Combining the approaches of functionals associated with h-concave functions and fixed point techniques, we study the existence and uniqueness of a solution for a class of nonlinear integral equation: x(t) = g1(t)-g2(t) + ? ?t,0 V1(t,s)h1(s,x(s))ds + ? ?T,0 V2(t,s)h2(s,x(s))ds; where C([0,T];R) denotes the space of all continuous functions on [0,T] equipped with the uniform metric and t?[0,T], ?,? are real numbers, g1, g2 ? C([0, T],R) and V1(t,s), V2(t,s), h1(t,s), h2(t,s) are continuous real-valued functions in [0,T]xR.


2021 ◽  
Vol 41 (5) ◽  
pp. 1809-1826
Author(s):  
Douglas R. Anderson ◽  
Masakazu Onitsuka

2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
Samir H. Saker

We will prove some new dynamic inequalities of Opial's type on time scales. The results not only extend some results in the literature but also improve some of them. Some continuous and discrete inequalities are derived from the main results as special cases. The results will be applied on second-order half-linear dynamic equations on time scales to prove several results related to the spacing between consecutive zeros of solutions and the spacing between zeros of a solution and/or its derivative. The results also yield conditions for disfocality of these equations.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Hua Su

In this paper, by using the partial order method, the existence and uniqueness of a solution for systems of a class of abstract operator equations in Banach spaces are discussed. The result obtained in this paper improves and unifies many recent results. Two applications to the system of nonlinear differential equations and the systems of nonlinear differential equations in Banach spaces are given, and the unique solution and interactive sequences which converge the unique solution and the error estimation are obtained.


2018 ◽  
Vol 51 (1) ◽  
pp. 198-210 ◽  
Author(s):  
Douglas R. Anderson ◽  
Masakazu Onitsuka

Abstract We establish theHyers-Ulam stability (HUS) of certain first-order linear constant coefficient dynamic equations on time scales, which include the continuous (step size zero) and the discrete (step size constant and nonzero) dynamic equations as important special cases. In particular, for certain parameter values in relation to the graininess of the time scale, we find the minimum HUS constants. A few nontrivial examples are provided. Moreover, an application to a perturbed linear dynamic equation is also included.


Sign in / Sign up

Export Citation Format

Share Document