STATISTICAL STRENGTH ANALYSIS FOR HONEYCOMB MATERIALS

2013 ◽  
Vol 05 (02) ◽  
pp. 1350021 ◽  
Author(s):  
ALP KARAKOÇ ◽  
JOUNI FREUND

In the present study, a statistical strength model is proposed, which aims at describing how the strength of geometrically irregular honeycomb material is affected by the scale. Hence, the samples are designed based on the selected geometrical irregularity and the number of the cells/scale. Simulation experiments are conducted on these samples under different loading combinations. The experiment results are linked to possible failure mechanisms in order to obtain the critical loads which are expressed in terms of cumulative distribution functions. The discrete distribution data of the critical loads are then fitted to analyze the effect of scale on different strength percentiles by virtue of the least squares function and closed quadric surface fitting. Eventually, the outcome is expressed in terms of ellipsoid surface representing the honeycomb material strength in three-dimensional stress space.

Author(s):  
Austen D. Fradeneck ◽  
Mark L. Kimber

Abstract The applicability of several Reynolds averaged Navier–Stokes (RANS) turbulence models in calculating the transient evolution of a buoyancy-induced flow reversal along a vertical heated plate is analyzed through the use of validation quality experimental data from the Rotatable Buoyancy Tunnel (RoBuT) facility. This benchmark attempts to capture the transient evolution from downward forced convection to upward natural convection by removing power to the blower and allowing the buoyancy force emanating from the heated plate to gradually dominate as the primary driving force. Boundary conditions and system response quantities for the numerical model are supplied from the experiment every 0.2 s during the 18.2 s transient. ASME standards are used to quantify the numerical uncertainties while the input uncertainties are handled using a Latin hypercube sampling (LHS) method based on the steady-state conditions (t=0 s). Qualitative comparisons between numerical and experimental results at several downstream locations are supported using a validation metric based on the statistical disparity between the respective empirical and cumulative distribution functions (CDFs). The results from this study show that the standard linear eddy-viscosity models have difficulty in reproducing the complex features of the flow reversal in comparison with the more intricate turbulence models such as Reynolds stress models (RSM) and low-Reynolds number variants. This study also briefly highlights the difficulties of capturing validation quality data for three-dimensional multiphysics flow, while also providing insight for the design of future experimental efforts.


Author(s):  
Rama Subba Reddy Gorla ◽  
Shantaram S. Pai ◽  
Isaiah Blankson ◽  
Srinivas C. Tadepalli ◽  
Sreekantha Reddy Gorla

An unsteady, three dimensional Navier-Stokes solution in rotating frame formulation for turbomachinery applications has been described. Casting the governing equations in a rotating frame enables the freezing of grid motion and results in substantial savings in computer time. Heat transfer to a gas turbine blade was computationally simulated by finite element methods and probabilistically evaluated in view of the several uncertainties in the performance parameters. The interconnection between the CFD code and finite element structural analysis code was necessary to couple the thermal profiles with the structural design. The stresses and their variations were evaluated at critical points on the turbine blade. Cumulative distribution functions and sensitivity factors were computed for stresses due to the aerodynamic, geometric, material and thermal random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of the appropriate materials to be used and to the identification of both the most critical measurements and parameters.


Author(s):  
Oleksiy Domin ◽  
Oleksiy Larin

This article deals with the problems of designing and analysis of the deformed state of the wind turbine blade under critical loads. A three-dimensional shell simulation model is built, taking into account the complex curvilinear geometry and the presence of reinforcing internal parts. The determination of the parameters of the stress-strain state under the influence of wind load was carried out on the basis of the finite element method. A shell ten-node isoparametric finite element was used. The constructed finite element model of the blade allows taking into account the composite structure and reproduced the presence of a different number of composite layers along the thickness of the shell, the diversity of fibers on individual layers, in particular, the curvilinear orthotropy of mechanical properties was modeled. The procedure of multi-layer structure setting is presented, which provides for superimposition of layers of composite one on the other in places of joint, which ensures compliance of model with technological peculiarities. Static analysis of structural deformation calculation is carried out taking into account lifting force and air head force. The strength analysis was performed for each of the layers according to the criterion of maximum deformations. Key words: composite material, wind turbine blade, strength, finite-elemental analysis, orthotropy of characteristics.


2016 ◽  
Vol 89 (3) ◽  
pp. 371-391 ◽  
Author(s):  
Suma R. Das ◽  
Pashupati Dhakal ◽  
Hari Poudyal ◽  
Abhilash J. Chandy

ABSTRACT Three-dimensional, transient, isothermal, and incompressible computational fluid dynamics (CFD) simulations are carried out for rubber mixing with two counter-rotating rotors in a partially filled chamber in order to assess the effect of different speed ratios. The three different speed ratios that are investigated include 1.0, 1.125, and 1.5. In addition to the solution of the incompressible continuity and momentum equations, a Eulerian multiphase model is employed to simulate two phases, rubber and air, and the volume of fluid (VOF) technique is used to calculate the free surface flow between the phases. The Bird–Carreau model is used to characterize the non-Newtonian highly viscous rubber. Massless particles are injected in the simulations to obtain data required for statistical calculations related to dispersive and distributive mixing characteristics. Specifically, joint probability density functions of mixing index and shear rate, and cumulative distribution functions of maximum shear stress are calculated to assess dispersive mixing, while distributive mixing capabilities are evaluated using various quantities such as cluster distribution index, axial distribution, interchamber particle transfer, and segregation scale. Results showed the speed ratio 1.125 to be consistently superior to 1.5 and 1.0, in terms of both dispersive and distributive mixing performance. The large speed difference between the rotors in the case of 1.5 caused it to perform the worst.


2020 ◽  
Vol 501 (1) ◽  
pp. 994-1001
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey ◽  
Snehasish Bhattacharjee

ABSTRACT We use an information theoretic framework to analyse data from the Galaxy Zoo 2 project and study if there are any statistically significant correlations between the presence of bars in spiral galaxies and their environment. We measure the mutual information between the barredness of galaxies and their environments in a volume limited sample (Mr ≤ −21) and compare it with the same in data sets where (i) the bar/unbar classifications are randomized and (ii) the spatial distribution of galaxies are shuffled on different length scales. We assess the statistical significance of the differences in the mutual information using a t-test and find that both randomization of morphological classifications and shuffling of spatial distribution do not alter the mutual information in a statistically significant way. The non-zero mutual information between the barredness and environment arises due to the finite and discrete nature of the data set that can be entirely explained by mock Poisson distributions. We also separately compare the cumulative distribution functions of the barred and unbarred galaxies as a function of their local density. Using a Kolmogorov–Smirnov test, we find that the null hypothesis cannot be rejected even at $75{{\ \rm per\ cent}}$ confidence level. Our analysis indicates that environments do not play a significant role in the formation of a bar, which is largely determined by the internal processes of the host galaxy.


2021 ◽  
Vol 13 (6) ◽  
pp. 1096
Author(s):  
Soi Ahn ◽  
Sung-Rae Chung ◽  
Hyun-Jong Oh ◽  
Chu-Yong Chung

This study aimed to generate a near real time composite of aerosol optical depth (AOD) to improve predictive model ability and provide current conditions of aerosol spatial distribution and transportation across Northeast Asia. AOD, a proxy for aerosol loading, is estimated remotely by various spaceborne imaging sensors capturing visible and infrared spectra. Nevertheless, differences in satellite-based retrieval algorithms, spatiotemporal resolution, sampling, radiometric calibration, and cloud-screening procedures create significant variability among AOD products. Satellite products, however, can be complementary in terms of their accuracy and spatiotemporal comprehensiveness. Thus, composite AOD products were derived for Northeast Asia based on data from four sensors: Advanced Himawari Imager (AHI), Geostationary Ocean Color Imager (GOCI), Moderate Infrared Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS). Cumulative distribution functions were employed to estimate error statistics using measurements from the Aerosol Robotic Network (AERONET). In order to apply the AERONET point-specific error, coefficients of each satellite were calculated using inverse distance weighting. Finally, the root mean square error (RMSE) for each satellite AOD product was calculated based on the inverse composite weighting (ICW). Hourly AOD composites were generated (00:00–09:00 UTC, 2017) using the regression equation derived from the comparison of the composite AOD error statistics to AERONET measurements, and the results showed that the correlation coefficient and RMSE values of composite were close to those of the low earth orbit satellite products (MODIS and VIIRS). The methodology and the resulting dataset derived here are relevant for the demonstrated successful merging of multi-sensor retrievals to produce long-term satellite-based climate data records.


Author(s):  
Rama Subba Reddy Gorla

Heat transfer from a nuclear fuel rod bumper support was computationally simulated by a finite element method and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for overall heat transfer rates due to the thermodynamic random variables. These results can be used to identify quickly the most critical design variables in order to optimize the design and to make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in heat transfer and to the identification of both the most critical measurements and the parameters.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Thabet Abdeljawad ◽  
Saima Rashid ◽  
Zakia Hammouch ◽  
İmdat İşcan ◽  
Yu-Ming Chu

Abstract The present article addresses the concept of p-convex functions on fractal sets. We are able to prove a novel auxiliary result. In the application aspect, the fidelity of the local fractional is used to establish the generalization of Simpson-type inequalities for the class of functions whose local fractional derivatives in absolute values at certain powers are p-convex. The method we present is an alternative in showing the classical variants associated with generalized p-convex functions. Some parts of our results cover the classical convex functions and classical harmonically convex functions. Some novel applications in random variables, cumulative distribution functions and generalized bivariate means are obtained to ensure the correctness of the present results. The present approach is efficient, reliable, and it can be used as an alternative to establishing new solutions for different types of fractals in computer graphics.


Sign in / Sign up

Export Citation Format

Share Document